Spaces:
Running
Running
Log google drive documents in the mongodb, add source of the document and made chunks to overlap text.
acdfaa9
# src/utils/document_processor.py | |
from typing import List, Dict, Optional, Union | |
import PyPDF2 | |
import docx | |
import pandas as pd | |
import json | |
from pathlib import Path | |
import hashlib | |
import mimetypes # Add this instead | |
from bs4 import BeautifulSoup | |
import csv | |
from datetime import datetime | |
import threading | |
from queue import Queue | |
import tiktoken | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
import logging | |
from bs4.element import ProcessingInstruction | |
from config.config import Settings | |
from .enhanced_excel_processor import EnhancedExcelProcessor | |
class DocumentProcessor: | |
def __init__( | |
self, | |
chunk_size: Optional[int] = None, | |
chunk_overlap: Optional[int] = None, | |
max_file_size: Optional[int] = None, | |
supported_formats: Optional[List[str]] = None | |
): | |
""" | |
Initialize DocumentProcessor with configurable parameters | |
Args: | |
chunk_size (Optional[int]): Size of text chunks | |
chunk_overlap (Optional[int]): Overlap between chunks | |
max_file_size (Optional[int]): Maximum file size in bytes | |
supported_formats (Optional[List[str]]): List of supported file extensions | |
""" | |
logging.basicConfig( | |
level=logging.DEBUG, | |
format='%(asctime)s - %(levelname)s - %(message)s' | |
) | |
# Get settings with validation | |
default_settings = Settings.get_document_processor_settings() | |
# Use provided values or defaults from settings | |
self.chunk_size = chunk_size if chunk_size is not None else default_settings[ | |
'chunk_size'] | |
self.chunk_overlap = chunk_overlap if chunk_overlap is not None else default_settings[ | |
'chunk_overlap'] | |
self.max_file_size = max_file_size if max_file_size is not None else default_settings[ | |
'max_file_size'] | |
self.supported_formats = supported_formats if supported_formats is not None else default_settings[ | |
'supported_formats'] | |
# Validate settings | |
self._validate_settings() | |
# Initialize existing components | |
self.processing_queue = Queue() | |
self.processed_docs = {} | |
self._initialize_text_splitter() | |
self.excel_processor = EnhancedExcelProcessor() | |
# Check for required packages (keep existing functionality) | |
try: | |
import striprtf.striprtf | |
except ImportError: | |
logging.warning( | |
"Warning: striprtf package not found. RTF support will be limited.") | |
try: | |
from bs4 import BeautifulSoup | |
import lxml | |
except ImportError: | |
logging.warning( | |
"Warning: beautifulsoup4 or lxml package not found. XML support will be limited.") | |
def _validate_settings(self): | |
"""Validate and adjust settings if necessary""" | |
# Ensure chunk_size is positive and reasonable | |
self.chunk_size = max(100, self.chunk_size) | |
# Ensure chunk_overlap is less than chunk_size | |
self.chunk_overlap = min(self.chunk_overlap, self.chunk_size - 50) | |
# Ensure max_file_size is reasonable (minimum 1MB) | |
self.max_file_size = max(1024 * 1024, self.max_file_size) | |
# Ensure supported_formats contains valid extensions | |
if not self.supported_formats: | |
# Fallback to default supported formats if empty | |
self.supported_formats = Settings.DOCUMENT_PROCESSOR['supported_formats'] | |
# Ensure all formats start with a dot | |
self.supported_formats = [ | |
f".{fmt.lower().lstrip('.')}" if not fmt.startswith( | |
'.') else fmt.lower() | |
for fmt in self.supported_formats | |
] | |
def _initialize_text_splitter(self): | |
"""Initialize the text splitter with custom settings""" | |
self.text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=self.chunk_size, | |
chunk_overlap=self.chunk_overlap, | |
length_function=len, | |
# Modify separators to better handle markdown while maintaining overlap | |
separators=["\n\n", "\n", " ", ""], | |
keep_separator=True, | |
add_start_index=True, | |
strip_whitespace=False # Keep whitespace to maintain markdown formatting | |
) | |
def _find_break_point(self, text: str, prev_chunk: str) -> int: | |
""" | |
Find suitable breaking point that maintains document structure | |
Args: | |
text (str): Text to find break point in (the overlap portion) | |
prev_chunk (str): The complete previous chunk for context | |
Returns: | |
int: Position of suitable break point | |
""" | |
# Get the context of how the previous chunk ends | |
prev_chunk_lines = prev_chunk.split('\n') | |
# Special handling for markdown tables | |
if '|' in prev_chunk: | |
# Check if we're in the middle of a table | |
table_rows = [ | |
line for line in prev_chunk_lines if line.strip().startswith('|')] | |
if table_rows: | |
# Find where the current table starts in the text | |
table_start = text.find('|') | |
if table_start >= 0: | |
# Find the next row boundary | |
next_row = text.find('\n', table_start) | |
if next_row >= 0: | |
return next_row + 1 # Include the newline | |
# Define break point markers in order of preference | |
break_markers = [ | |
('\n\n', True), # Paragraph breaks (keep marker) | |
('\n', True), # Line breaks (keep marker) | |
('. ', True), # Sentence endings (keep marker) | |
(', ', True), # Clause breaks (keep marker) | |
(' ', False) # Word breaks (don't keep marker) | |
] | |
# Check the structure of the previous chunk end | |
last_line = prev_chunk_lines[-1] if prev_chunk_lines else "" | |
# Look for each type of break point | |
for marker, keep_marker in break_markers: | |
if marker in text: | |
# Try to find a break point that maintains document structure | |
marker_positions = [i for i in range( | |
len(text)) if text[i:i+len(marker)] == marker] | |
for pos in reversed(marker_positions): | |
# Check if this break point would maintain document structure | |
if self._is_valid_break_point(text, pos, last_line): | |
return pos + (len(marker) if keep_marker else 0) | |
# If no suitable break point found, default to exact position | |
return min(len(text), self.chunk_overlap) | |
def _is_valid_break_point(self, text: str, position: int, last_line: str) -> bool: | |
""" | |
Check if a break point would maintain document structure | |
Args: | |
text (str): Text being checked | |
position (int): Potential break position | |
last_line (str): Last line of previous chunk | |
Returns: | |
bool: True if break point is valid | |
""" | |
# Don't break in the middle of markdown formatting | |
markdown_markers = ['*', '_', '`', '[', ']', '(', ')', '#'] | |
if position > 0 and position < len(text) - 1: | |
if text[position-1] in markdown_markers or text[position+1] in markdown_markers: | |
return False | |
# Don't break in the middle of a table cell | |
if '|' in last_line: | |
cell_count = last_line.count('|') | |
text_before_break = text[:position] | |
if text_before_break.count('|') % cell_count != 0: | |
return False | |
# Don't break URLs or code blocks | |
url_patterns = ['http://', 'https://', '```', '`'] | |
for pattern in url_patterns: | |
if pattern in text[:position] and pattern not in text[position:]: | |
return False | |
return True | |
def _validate_chunks(self, original_text: str, chunks: List[str]) -> bool: | |
"""Validate that chunks maintain document integrity""" | |
try: | |
# Remove overlap to check content | |
reconstructed = chunks[0] | |
for chunk in chunks[1:]: | |
if len(chunk) > self.chunk_overlap: | |
reconstructed += chunk[self.chunk_overlap:] | |
# Clean both texts for comparison (remove extra whitespace) | |
clean_original = ' '.join(original_text.split()) | |
clean_reconstructed = ' '.join(reconstructed.split()) | |
return clean_original == clean_reconstructed | |
except Exception as e: | |
logging.error(f"Error validating chunks: {str(e)}") | |
return False | |
def _extract_content(self, file_path: Path) -> str: | |
"""Extract content from different file formats""" | |
suffix = file_path.suffix.lower() | |
try: | |
if suffix == '.pdf': | |
return self._extract_pdf(file_path) | |
elif suffix == '.docx': | |
return self._extract_docx(file_path) | |
elif suffix == '.csv': | |
return self._extract_csv(file_path) | |
elif suffix == '.json': | |
return self._extract_json(file_path) | |
elif suffix == '.html': | |
return self._extract_html(file_path) | |
elif suffix == '.txt' or suffix == '.md': | |
return self._extract_text(file_path) | |
elif suffix == '.xml': | |
return self._extract_xml(file_path) | |
elif suffix == '.rtf': | |
return self._extract_rtf(file_path) | |
elif suffix in ['.xlsx', '.xls']: | |
return self._extract_excel(file_path) | |
else: | |
raise ValueError(f"Unsupported format: {suffix}") | |
except Exception as e: | |
raise Exception( | |
f"Error extracting content from {file_path}: {str(e)}") | |
def _extract_text(self, file_path: Path) -> str: | |
"""Extract content from text-based files""" | |
try: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
return f.read() | |
except UnicodeDecodeError: | |
with open(file_path, 'r', encoding='latin-1') as f: | |
return f.read() | |
def _extract_pdf(self, file_path: Path) -> str: | |
"""Extract text from PDF with advanced features""" | |
text = "" | |
with open(file_path, 'rb') as file: | |
reader = PyPDF2.PdfReader(file) | |
metadata = reader.metadata | |
for page in reader.pages: | |
text += page.extract_text() + "\n\n" | |
# Extract images if available | |
if '/XObject' in page['/Resources']: | |
for obj in page['/Resources']['/XObject'].get_object(): | |
if page['/Resources']['/XObject'][obj]['/Subtype'] == '/Image': | |
pass | |
return text.strip() | |
def _extract_docx(self, file_path: Path) -> str: | |
"""Extract text from DOCX with formatting""" | |
doc = docx.Document(file_path) | |
full_text = [] | |
for para in doc.paragraphs: | |
full_text.append(para.text) | |
for table in doc.tables: | |
for row in table.rows: | |
row_text = [cell.text for cell in row.cells] | |
full_text.append(" | ".join(row_text)) | |
return "\n\n".join(full_text) | |
def _extract_csv(self, file_path: Path) -> str: | |
"""Convert CSV to structured text""" | |
df = pd.read_csv(file_path) | |
return df.to_string() | |
def _extract_json(self, file_path: Path) -> str: | |
"""Convert JSON to readable text""" | |
with open(file_path) as f: | |
data = json.load(f) | |
return json.dumps(data, indent=2) | |
def _extract_html(self, file_path: Path) -> str: | |
"""Extract text from HTML with structure preservation""" | |
with open(file_path) as f: | |
soup = BeautifulSoup(f, 'html.parser') | |
for script in soup(["script", "style"]): | |
script.decompose() | |
text = soup.get_text(separator='\n') | |
lines = [line.strip() for line in text.splitlines() if line.strip()] | |
return "\n\n".join(lines) | |
def _extract_xml(self, file_path: Path) -> str: | |
"""Extract text from XML with structure preservation""" | |
try: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
soup = BeautifulSoup(f, 'xml') | |
for pi in soup.find_all(text=lambda text: isinstance(text, ProcessingInstruction)): | |
pi.extract() | |
text = soup.get_text(separator='\n') | |
lines = [line.strip() | |
for line in text.splitlines() if line.strip()] | |
return "\n\n".join(lines) | |
except Exception as e: | |
raise Exception(f"Error processing XML file: {str(e)}") | |
def _extract_rtf(self, file_path: Path) -> str: | |
"""Extract text from RTF files""" | |
try: | |
import striprtf.striprtf as striprtf | |
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: | |
rtf_text = f.read() | |
plain_text = striprtf.rtf_to_text(rtf_text) | |
lines = [line.strip() | |
for line in plain_text.splitlines() if line.strip()] | |
return "\n\n".join(lines) | |
except ImportError: | |
raise ImportError("striprtf package is required for RTF support.") | |
except Exception as e: | |
raise Exception(f"Error processing RTF file: {str(e)}") | |
def _extract_excel(self, file_path: Path) -> str: | |
"""Extract content from Excel files with enhanced processing""" | |
try: | |
# Use enhanced Excel processor | |
processed_content = self.excel_processor.process_excel(file_path) | |
# If processing fails, fall back to basic processing | |
if not processed_content: | |
logging.warning( | |
f"Enhanced Excel processing failed for {file_path}, falling back to basic processing") | |
return self._basic_excel_extract(file_path) | |
return processed_content | |
except Exception as e: | |
logging.error(f"Error in enhanced Excel processing: {str(e)}") | |
# Fall back to basic Excel processing | |
return self._basic_excel_extract(file_path) | |
def _basic_excel_extract(self, file_path: Path) -> str: | |
"""Basic Excel extraction as fallback""" | |
try: | |
excel_file = pd.ExcelFile(file_path) | |
sheets_data = [] | |
for sheet_name in excel_file.sheet_names: | |
df = pd.read_excel(excel_file, sheet_name=sheet_name) | |
sheet_content = f"\nSheet: {sheet_name}\n" | |
sheet_content += "=" * (len(sheet_name) + 7) + "\n" | |
if df.empty: | |
sheet_content += "Empty Sheet\n" | |
else: | |
sheet_content += df.fillna('').to_string( | |
index=False, | |
max_rows=None, | |
max_cols=None, | |
line_width=120 | |
) + "\n" | |
sheets_data.append(sheet_content) | |
return "\n\n".join(sheets_data) | |
except Exception as e: | |
raise Exception(f"Error in basic Excel processing: {str(e)}") | |
def _get_mime_type(self, file_path: Path) -> str: | |
""" | |
Get MIME type for a file based on its extension | |
Args: | |
file_path (Path): Path to the file | |
Returns: | |
str: MIME type of the file | |
""" | |
# Standard MIME mappings for supported formats | |
MIME_MAPPINGS = { | |
'.pdf': 'application/pdf', | |
'.docx': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document', | |
'.doc': 'application/msword', | |
'.csv': 'text/csv', | |
'.json': 'application/json', | |
'.html': 'text/html', | |
'.txt': 'text/plain', | |
'.md': 'text/markdown', | |
'.xml': 'text/xml', | |
'.rtf': 'application/rtf', | |
'.xlsx': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', | |
'.xls': 'application/vnd.ms-excel' | |
} | |
suffix = file_path.suffix.lower() | |
# Verify the file format is supported | |
if suffix not in self.supported_formats: | |
logging.warning(f"Unsupported file format: {suffix}") | |
return 'application/octet-stream' | |
# Return known MIME type or fall back to mimetypes module | |
if suffix in MIME_MAPPINGS: | |
return MIME_MAPPINGS[suffix] | |
mime_type = mimetypes.guess_type(str(file_path))[0] | |
return mime_type if mime_type else 'application/octet-stream' | |
def _generate_metadata( | |
self, | |
file_path: Path, | |
content: str, | |
additional_metadata: Optional[Dict] = None | |
) -> Dict: | |
"""Generate comprehensive metadata""" | |
file_stat = file_path.stat() | |
metadata = { | |
'filename': file_path.name, | |
'file_type': file_path.suffix, | |
'file_size': file_stat.st_size, | |
'created_at': datetime.fromtimestamp(file_stat.st_ctime), | |
'modified_at': datetime.fromtimestamp(file_stat.st_mtime), | |
'content_hash': self._calculate_hash(content), | |
'mime_type': self._get_mime_type(file_path), | |
'word_count': len(content.split()), | |
'character_count': len(content), | |
'processing_timestamp': datetime.now().isoformat() | |
} | |
# Add Excel-specific metadata if applicable | |
if file_path.suffix.lower() in ['.xlsx', '.xls']: | |
try: | |
if hasattr(self.excel_processor, 'get_metadata'): | |
excel_metadata = self.excel_processor.get_metadata() | |
metadata.update({'excel_metadata': excel_metadata}) | |
except Exception as e: | |
logging.warning(f"Could not extract Excel metadata: {str(e)}") | |
if additional_metadata: | |
metadata.update(additional_metadata) | |
return metadata | |
# def _generate_metadata( | |
# self, | |
# file_path: Path, | |
# content: str, | |
# additional_metadata: Optional[Dict] = None | |
# ) -> Dict: | |
# """Generate comprehensive metadata""" | |
# file_stat = file_path.stat() | |
# metadata = { | |
# 'filename': file_path.name, | |
# 'file_type': file_path.suffix, | |
# 'file_size': file_stat.st_size, | |
# 'created_at': datetime.fromtimestamp(file_stat.st_ctime), | |
# 'modified_at': datetime.fromtimestamp(file_stat.st_mtime), | |
# 'content_hash': self._calculate_hash(content), | |
# 'mime_type': magic.from_file(str(file_path), mime=True), | |
# 'word_count': len(content.split()), | |
# 'character_count': len(content), | |
# 'processing_timestamp': datetime.now().isoformat() | |
# } | |
# # Add Excel-specific metadata if applicable | |
# if file_path.suffix.lower() in ['.xlsx', '.xls']: | |
# try: | |
# if hasattr(self.excel_processor, 'get_metadata'): | |
# excel_metadata = self.excel_processor.get_metadata() | |
# metadata.update({'excel_metadata': excel_metadata}) | |
# except Exception as e: | |
# logging.warning(f"Could not extract Excel metadata: {str(e)}") | |
# if additional_metadata: | |
# metadata.update(additional_metadata) | |
# return metadata | |
def _calculate_hash(self, text: str) -> str: | |
"""Calculate SHA-256 hash of text""" | |
return hashlib.sha256(text.encode()).hexdigest() | |
def _process_chunks(self, text: str) -> List[str]: | |
"""Process text into chunks with proper overlap""" | |
chunks = self.text_splitter.split_text(text) | |
# Ensure minimum chunk size and handle overlaps | |
processed_chunks = [] | |
for i, chunk in enumerate(chunks): | |
if i > 0: | |
# Add overlap from previous chunk | |
overlap_start = max( | |
0, len(processed_chunks[-1]) - self.chunk_overlap) | |
chunk = processed_chunks[-1][overlap_start:] + chunk | |
if len(chunk) > self.chunk_size: | |
# Split oversized chunks | |
sub_chunks = self.text_splitter.split_text(chunk) | |
processed_chunks.extend(sub_chunks) | |
else: | |
processed_chunks.append(chunk) | |
return processed_chunks | |
async def process_document(self, file_path: Union[str, Path]) -> Dict: | |
"""Process document with chunk overlapping""" | |
file_path = Path(file_path) | |
if not self._validate_file(file_path): | |
raise ValueError(f"Invalid file: {file_path}") | |
content = self._extract_content(file_path) | |
chunks = self._process_chunks(content) | |
return { | |
'content': content, | |
'chunks': chunks, | |
'metadata': self._generate_metadata(file_path, content) | |
} | |
def _calculate_overlap_size(self, chunk1: str, chunk2: str) -> int: | |
"""Calculate the size of overlap between two chunks""" | |
min_len = min(len(chunk1), len(chunk2)) | |
for i in range(min_len, 0, -1): | |
if chunk1[-i:] == chunk2[:i]: | |
return i | |
return 0 | |
def _validate_file(self, file_path: Path) -> bool: | |
"""Validate file type, size, and content""" | |
if not file_path.exists(): | |
raise FileNotFoundError(f"File not found: {file_path}") | |
if file_path.suffix.lower() not in self.supported_formats: | |
raise ValueError(f"Unsupported file format: {file_path.suffix}") | |
if file_path.stat().st_size > self.max_file_size: | |
raise ValueError(f"File too large: {file_path}") | |
if file_path.stat().st_size == 0: | |
raise ValueError(f"Empty file: {file_path}") | |
return True | |
def _generate_statistics(self, content: str, chunks: List[str]) -> Dict: | |
"""Generate document statistics""" | |
return { | |
'total_chunks': len(chunks), | |
'average_chunk_size': sum(len(chunk) for chunk in chunks) / len(chunks), | |
'token_estimate': len(content.split()), | |
'unique_words': len(set(content.lower().split())), | |
'sentences': len([s for s in content.split('.') if s.strip()]), | |
} | |
async def batch_process( | |
self, | |
file_paths: List[Union[str, Path]], | |
parallel: bool = True | |
) -> Dict[str, Dict]: | |
"""Process multiple documents in parallel""" | |
results = {} | |
if parallel: | |
threads = [] | |
for file_path in file_paths: | |
thread = threading.Thread( | |
target=self._process_and_store, | |
args=(file_path, results) | |
) | |
threads.append(thread) | |
thread.start() | |
for thread in threads: | |
thread.join() | |
else: | |
for file_path in file_paths: | |
await self._process_and_store(file_path, results) | |
return results | |
async def _process_and_store( | |
self, | |
file_path: Union[str, Path], | |
results: Dict | |
): | |
"""Process a single document and store results""" | |
try: | |
result = await self.process_document(file_path) | |
results[str(file_path)] = result | |
except Exception as e: | |
results[str(file_path)] = {'error': str(e)} | |