Spaces:
Running
Running
Commit
·
0739c8b
1
Parent(s):
4daad35
Commit chatbot chnages
Browse files- src/__pycache__/main.cpython-312.pyc +0 -0
- src/agents/__pycache__/rag_agent.cpython-312.pyc +0 -0
- src/agents/rag_agent.py +49 -19
- src/db/__pycache__/mongodb_store.cpython-312.pyc +0 -0
- src/implementations/__pycache__/document_service.cpython-312.pyc +0 -0
- src/main.py +31 -0
- src/models/__pycache__/document.cpython-312.pyc +0 -0
- src/models/__pycache__/rag.cpython-312.pyc +0 -0
- src/models/rag.py +11 -0
- src/utils/__pycache__/logger.cpython-312.pyc +0 -0
- src/vectorstores/__pycache__/base_vectorstore.cpython-312.pyc +0 -0
- src/vectorstores/__pycache__/chroma_vectorstore.cpython-312.pyc +0 -0
- src/vectorstores/chroma_vectorstore.py +40 -7
src/__pycache__/main.cpython-312.pyc
CHANGED
Binary files a/src/__pycache__/main.cpython-312.pyc and b/src/__pycache__/main.cpython-312.pyc differ
|
|
src/agents/__pycache__/rag_agent.cpython-312.pyc
CHANGED
Binary files a/src/agents/__pycache__/rag_agent.cpython-312.pyc and b/src/agents/__pycache__/rag_agent.cpython-312.pyc differ
|
|
src/agents/rag_agent.py
CHANGED
@@ -1,16 +1,11 @@
|
|
1 |
# src/agents/rag_agent.py
|
2 |
-
from
|
3 |
-
from typing import List, Optional
|
4 |
|
5 |
from ..llms.base_llm import BaseLLM
|
6 |
from src.embeddings.base_embedding import BaseEmbedding
|
7 |
from src.vectorstores.base_vectorstore import BaseVectorStore
|
8 |
from src.utils.text_splitter import split_text
|
9 |
-
|
10 |
-
@dataclass
|
11 |
-
class RAGResponse:
|
12 |
-
response: str
|
13 |
-
context_docs: Optional[List[str]] = None
|
14 |
|
15 |
class RAGAgent:
|
16 |
def __init__(
|
@@ -23,11 +18,21 @@ class RAGAgent:
|
|
23 |
self.embedding = embedding
|
24 |
self.vector_store = vector_store
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def retrieve_context(
|
27 |
self,
|
28 |
query: str,
|
29 |
top_k: int = 3
|
30 |
-
) -> List[str]:
|
31 |
"""
|
32 |
Retrieve relevant context documents for a given query
|
33 |
|
@@ -36,22 +41,36 @@ class RAGAgent:
|
|
36 |
top_k (int): Number of top context documents to retrieve
|
37 |
|
38 |
Returns:
|
39 |
-
List[str]
|
40 |
"""
|
41 |
# Embed the query
|
42 |
query_embedding = self.embedding.embed_query(query)
|
43 |
|
44 |
-
# Retrieve similar documents
|
45 |
-
|
46 |
query_embedding,
|
47 |
top_k=top_k
|
48 |
)
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
def generate_response(
|
53 |
self,
|
54 |
-
query: str,
|
|
|
|
|
55 |
context_docs: Optional[List[str]] = None
|
56 |
) -> RAGResponse:
|
57 |
"""
|
@@ -59,6 +78,8 @@ class RAGAgent:
|
|
59 |
|
60 |
Args:
|
61 |
query (str): User input query
|
|
|
|
|
62 |
context_docs (Optional[List[str]]): Optional pre-provided context documents
|
63 |
|
64 |
Returns:
|
@@ -66,17 +87,26 @@ class RAGAgent:
|
|
66 |
"""
|
67 |
# If no context provided, retrieve from vector store
|
68 |
if not context_docs:
|
69 |
-
context_docs = self.retrieve_context(query)
|
|
|
|
|
|
|
70 |
|
71 |
# Construct augmented prompt with context
|
72 |
augmented_prompt = self._construct_prompt(query, context_docs)
|
73 |
|
74 |
-
# Generate response using LLM
|
75 |
-
response = self.llm.generate(
|
|
|
|
|
|
|
|
|
76 |
|
77 |
return RAGResponse(
|
78 |
-
response=response,
|
79 |
-
context_docs=context_docs
|
|
|
|
|
80 |
)
|
81 |
|
82 |
def _construct_prompt(
|
|
|
1 |
# src/agents/rag_agent.py
|
2 |
+
from typing import List, Optional, Tuple, Dict
|
|
|
3 |
|
4 |
from ..llms.base_llm import BaseLLM
|
5 |
from src.embeddings.base_embedding import BaseEmbedding
|
6 |
from src.vectorstores.base_vectorstore import BaseVectorStore
|
7 |
from src.utils.text_splitter import split_text
|
8 |
+
from src.models.rag import RAGResponse
|
|
|
|
|
|
|
|
|
9 |
|
10 |
class RAGAgent:
|
11 |
def __init__(
|
|
|
18 |
self.embedding = embedding
|
19 |
self.vector_store = vector_store
|
20 |
|
21 |
+
def _convert_metadata_to_strings(self, metadata: Dict) -> Dict:
|
22 |
+
"""Convert numeric metadata values to strings"""
|
23 |
+
converted = {}
|
24 |
+
for key, value in metadata.items():
|
25 |
+
if isinstance(value, (int, float)):
|
26 |
+
converted[key] = str(value)
|
27 |
+
else:
|
28 |
+
converted[key] = value
|
29 |
+
return converted
|
30 |
+
|
31 |
def retrieve_context(
|
32 |
self,
|
33 |
query: str,
|
34 |
top_k: int = 3
|
35 |
+
) -> Tuple[List[str], List[Dict], Optional[List[float]]]:
|
36 |
"""
|
37 |
Retrieve relevant context documents for a given query
|
38 |
|
|
|
41 |
top_k (int): Number of top context documents to retrieve
|
42 |
|
43 |
Returns:
|
44 |
+
Tuple[List[str], List[Dict], Optional[List[float]]]: Retrieved documents, sources, and scores
|
45 |
"""
|
46 |
# Embed the query
|
47 |
query_embedding = self.embedding.embed_query(query)
|
48 |
|
49 |
+
# Retrieve similar documents with metadata and scores
|
50 |
+
results = self.vector_store.similarity_search(
|
51 |
query_embedding,
|
52 |
top_k=top_k
|
53 |
)
|
54 |
|
55 |
+
# Extract documents, sources, and scores from results
|
56 |
+
documents = [doc['text'] for doc in results]
|
57 |
+
|
58 |
+
# Convert numeric metadata values to strings
|
59 |
+
sources = [self._convert_metadata_to_strings(doc['metadata']) for doc in results]
|
60 |
+
|
61 |
+
scores = [doc['score'] for doc in results if doc.get('score') is not None]
|
62 |
+
|
63 |
+
# Only return scores if we have them for all documents
|
64 |
+
if len(scores) != len(documents):
|
65 |
+
scores = None
|
66 |
+
|
67 |
+
return documents, sources, scores
|
68 |
|
69 |
+
async def generate_response(
|
70 |
self,
|
71 |
+
query: str,
|
72 |
+
temperature: float = 0.7,
|
73 |
+
max_tokens: Optional[int] = None,
|
74 |
context_docs: Optional[List[str]] = None
|
75 |
) -> RAGResponse:
|
76 |
"""
|
|
|
78 |
|
79 |
Args:
|
80 |
query (str): User input query
|
81 |
+
temperature (float): Sampling temperature for the LLM
|
82 |
+
max_tokens (Optional[int]): Maximum tokens to generate
|
83 |
context_docs (Optional[List[str]]): Optional pre-provided context documents
|
84 |
|
85 |
Returns:
|
|
|
87 |
"""
|
88 |
# If no context provided, retrieve from vector store
|
89 |
if not context_docs:
|
90 |
+
context_docs, sources, scores = self.retrieve_context(query)
|
91 |
+
else:
|
92 |
+
sources = None
|
93 |
+
scores = None
|
94 |
|
95 |
# Construct augmented prompt with context
|
96 |
augmented_prompt = self._construct_prompt(query, context_docs)
|
97 |
|
98 |
+
# Generate response using LLM with temperature
|
99 |
+
response = self.llm.generate(
|
100 |
+
augmented_prompt,
|
101 |
+
temperature=temperature,
|
102 |
+
max_tokens=max_tokens
|
103 |
+
)
|
104 |
|
105 |
return RAGResponse(
|
106 |
+
response=response,
|
107 |
+
context_docs=context_docs,
|
108 |
+
sources=sources,
|
109 |
+
scores=scores
|
110 |
)
|
111 |
|
112 |
def _construct_prompt(
|
src/db/__pycache__/mongodb_store.cpython-312.pyc
CHANGED
Binary files a/src/db/__pycache__/mongodb_store.cpython-312.pyc and b/src/db/__pycache__/mongodb_store.cpython-312.pyc differ
|
|
src/implementations/__pycache__/document_service.cpython-312.pyc
CHANGED
Binary files a/src/implementations/__pycache__/document_service.cpython-312.pyc and b/src/implementations/__pycache__/document_service.cpython-312.pyc differ
|
|
src/main.py
CHANGED
@@ -289,6 +289,37 @@ async def submit_feedback(
|
|
289 |
logger.error(f"Error submitting feedback: {str(e)}")
|
290 |
raise HTTPException(status_code=500, detail=str(e))
|
291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
@app.get("/health")
|
293 |
async def health_check():
|
294 |
"""Health check endpoint"""
|
|
|
289 |
logger.error(f"Error submitting feedback: {str(e)}")
|
290 |
raise HTTPException(status_code=500, detail=str(e))
|
291 |
|
292 |
+
@app.get("/debug/config")
|
293 |
+
async def debug_config():
|
294 |
+
"""Debug endpoint to check configuration"""
|
295 |
+
import os
|
296 |
+
from config.config import settings
|
297 |
+
from pathlib import Path
|
298 |
+
|
299 |
+
debug_info = {
|
300 |
+
"environment_variables": {
|
301 |
+
"OPENAI_API_KEY": "[SET]" if os.getenv('OPENAI_API_KEY') else "[NOT SET]",
|
302 |
+
"OPENAI_MODEL": os.getenv('OPENAI_MODEL', '[NOT SET]')
|
303 |
+
},
|
304 |
+
"settings": {
|
305 |
+
"OPENAI_API_KEY": "[SET]" if settings.OPENAI_API_KEY else "[NOT SET]",
|
306 |
+
"OPENAI_MODEL": settings.OPENAI_MODEL,
|
307 |
+
},
|
308 |
+
"files": {
|
309 |
+
"env_file_exists": Path('.env').exists(),
|
310 |
+
"openai_config_exists": (Path.home() / '.openai' / 'api_key').exists()
|
311 |
+
}
|
312 |
+
}
|
313 |
+
|
314 |
+
if settings.OPENAI_API_KEY:
|
315 |
+
key = settings.OPENAI_API_KEY
|
316 |
+
debug_info["api_key_info"] = {
|
317 |
+
"length": len(key),
|
318 |
+
"preview": f"{key[:4]}...{key[-4:]}" if len(key) > 8 else "[INVALID LENGTH]"
|
319 |
+
}
|
320 |
+
|
321 |
+
return debug_info
|
322 |
+
|
323 |
@app.get("/health")
|
324 |
async def health_check():
|
325 |
"""Health check endpoint"""
|
src/models/__pycache__/document.cpython-312.pyc
CHANGED
Binary files a/src/models/__pycache__/document.cpython-312.pyc and b/src/models/__pycache__/document.cpython-312.pyc differ
|
|
src/models/__pycache__/rag.cpython-312.pyc
ADDED
Binary file (833 Bytes). View file
|
|
src/models/rag.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# src/models/rag.py
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import List, Optional, Dict
|
4 |
+
|
5 |
+
@dataclass
|
6 |
+
class RAGResponse:
|
7 |
+
"""Response model for RAG-based generation"""
|
8 |
+
response: str
|
9 |
+
context_docs: Optional[List[str]] = None
|
10 |
+
sources: Optional[List[Dict]] = None
|
11 |
+
scores: Optional[List[float]] = None
|
src/utils/__pycache__/logger.cpython-312.pyc
CHANGED
Binary files a/src/utils/__pycache__/logger.cpython-312.pyc and b/src/utils/__pycache__/logger.cpython-312.pyc differ
|
|
src/vectorstores/__pycache__/base_vectorstore.cpython-312.pyc
CHANGED
Binary files a/src/vectorstores/__pycache__/base_vectorstore.cpython-312.pyc and b/src/vectorstores/__pycache__/base_vectorstore.cpython-312.pyc differ
|
|
src/vectorstores/__pycache__/chroma_vectorstore.cpython-312.pyc
CHANGED
Binary files a/src/vectorstores/__pycache__/chroma_vectorstore.cpython-312.pyc and b/src/vectorstores/__pycache__/chroma_vectorstore.cpython-312.pyc differ
|
|
src/vectorstores/chroma_vectorstore.py
CHANGED
@@ -91,7 +91,7 @@ class ChromaVectorStore(BaseVectorStore):
|
|
91 |
query_embedding: List[float],
|
92 |
top_k: int = 3,
|
93 |
**kwargs
|
94 |
-
) -> List[str]:
|
95 |
"""
|
96 |
Perform similarity search
|
97 |
|
@@ -101,20 +101,34 @@ class ChromaVectorStore(BaseVectorStore):
|
|
101 |
**kwargs: Additional search parameters
|
102 |
|
103 |
Returns:
|
104 |
-
List[str]: List of
|
105 |
"""
|
106 |
try:
|
107 |
results = self.collection.query(
|
108 |
query_embeddings=[query_embedding],
|
109 |
n_results=top_k,
|
110 |
-
|
111 |
)
|
112 |
|
113 |
# Handle the case where no results are found
|
114 |
-
if not results or 'documents' not in results:
|
115 |
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
return results.get('documents', [[]])[0]
|
118 |
except Exception as e:
|
119 |
logging.error(f"Error performing similarity search in ChromaDB: {str(e)}")
|
120 |
raise
|
@@ -125,6 +139,12 @@ class ChromaVectorStore(BaseVectorStore):
|
|
125 |
) -> List[Dict[str, Any]]:
|
126 |
"""
|
127 |
Retrieve all documents from the vector store
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
"""
|
129 |
try:
|
130 |
include = ["documents", "metadatas"]
|
@@ -163,7 +183,15 @@ class ChromaVectorStore(BaseVectorStore):
|
|
163 |
raise
|
164 |
|
165 |
def get_document_chunks(self, document_id: str) -> List[Dict[str, Any]]:
|
166 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
try:
|
168 |
results = self.collection.get(
|
169 |
where={"document_id": document_id},
|
@@ -190,7 +218,12 @@ class ChromaVectorStore(BaseVectorStore):
|
|
190 |
raise
|
191 |
|
192 |
def delete_document(self, document_id: str) -> None:
|
193 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
194 |
try:
|
195 |
# Get all chunks with the given document_id
|
196 |
results = self.collection.get(
|
|
|
91 |
query_embedding: List[float],
|
92 |
top_k: int = 3,
|
93 |
**kwargs
|
94 |
+
) -> List[Dict[str, Any]]:
|
95 |
"""
|
96 |
Perform similarity search
|
97 |
|
|
|
101 |
**kwargs: Additional search parameters
|
102 |
|
103 |
Returns:
|
104 |
+
List[Dict[str, Any]]: List of documents with their text, metadata, and scores
|
105 |
"""
|
106 |
try:
|
107 |
results = self.collection.query(
|
108 |
query_embeddings=[query_embedding],
|
109 |
n_results=top_k,
|
110 |
+
include=['documents', 'metadatas', 'distances']
|
111 |
)
|
112 |
|
113 |
# Handle the case where no results are found
|
114 |
+
if not results or 'documents' not in results or not results['documents']:
|
115 |
return []
|
116 |
+
|
117 |
+
# Format results to include text, metadata, and scores
|
118 |
+
formatted_results = []
|
119 |
+
documents = results['documents'][0] # First query's results
|
120 |
+
metadatas = results['metadatas'][0] if results.get('metadatas') else [None] * len(documents)
|
121 |
+
distances = results['distances'][0] if results.get('distances') else [None] * len(documents)
|
122 |
+
|
123 |
+
for doc, meta, dist in zip(documents, metadatas, distances):
|
124 |
+
formatted_results.append({
|
125 |
+
'text': doc,
|
126 |
+
'metadata': meta or {},
|
127 |
+
'score': 1.0 - (dist or 0.0) if dist is not None else None # Convert distance to similarity score
|
128 |
+
})
|
129 |
+
|
130 |
+
return formatted_results
|
131 |
|
|
|
132 |
except Exception as e:
|
133 |
logging.error(f"Error performing similarity search in ChromaDB: {str(e)}")
|
134 |
raise
|
|
|
139 |
) -> List[Dict[str, Any]]:
|
140 |
"""
|
141 |
Retrieve all documents from the vector store
|
142 |
+
|
143 |
+
Args:
|
144 |
+
include_embeddings (bool): Whether to include embeddings in the response
|
145 |
+
|
146 |
+
Returns:
|
147 |
+
List[Dict[str, Any]]: List of documents with their IDs and optionally embeddings
|
148 |
"""
|
149 |
try:
|
150 |
include = ["documents", "metadatas"]
|
|
|
183 |
raise
|
184 |
|
185 |
def get_document_chunks(self, document_id: str) -> List[Dict[str, Any]]:
|
186 |
+
"""
|
187 |
+
Retrieve all chunks for a specific document
|
188 |
+
|
189 |
+
Args:
|
190 |
+
document_id (str): ID of the document to retrieve chunks for
|
191 |
+
|
192 |
+
Returns:
|
193 |
+
List[Dict[str, Any]]: List of document chunks with their metadata
|
194 |
+
"""
|
195 |
try:
|
196 |
results = self.collection.get(
|
197 |
where={"document_id": document_id},
|
|
|
218 |
raise
|
219 |
|
220 |
def delete_document(self, document_id: str) -> None:
|
221 |
+
"""
|
222 |
+
Delete all chunks associated with a document_id
|
223 |
+
|
224 |
+
Args:
|
225 |
+
document_id (str): ID of the document to delete
|
226 |
+
"""
|
227 |
try:
|
228 |
# Get all chunks with the given document_id
|
229 |
results = self.collection.get(
|