Spaces:
Running
Running
Commit
·
6082154
1
Parent(s):
7e7ab71
Updating chroma db to be singleton class
Browse files- src/__pycache__/main.cpython-312.pyc +0 -0
- src/main.py +29 -0
- src/utils/__pycache__/drive_document_processor.cpython-312.pyc +0 -0
- src/utils/__pycache__/llm_utils.cpython-312.pyc +0 -0
- src/utils/llm_utils.py +84 -20
- src/vectorstores/__pycache__/chroma_vectorstore.cpython-312.pyc +0 -0
- src/vectorstores/__pycache__/optimized_vectorstore.cpython-312.pyc +0 -0
- src/vectorstores/chroma_manager.py +165 -0
- src/vectorstores/chroma_settings.py +15 -0
- src/vectorstores/chroma_vectorstore.py +428 -70
- src/vectorstores/optimized_vectorstore.py +6 -14
src/__pycache__/main.cpython-312.pyc
CHANGED
Binary files a/src/__pycache__/main.cpython-312.pyc and b/src/__pycache__/main.cpython-312.pyc differ
|
|
src/main.py
CHANGED
@@ -46,6 +46,8 @@ import random
|
|
46 |
from typing import List
|
47 |
from src.utils.logger import logger
|
48 |
from config.config import settings
|
|
|
|
|
49 |
|
50 |
os.environ['OAUTHLIB_INSECURE_TRANSPORT'] = '1'
|
51 |
# os.environ["OAUTHLIB_RELAX_TOKEN_SCOPE"] = "1"
|
@@ -678,6 +680,33 @@ async def debug_config():
|
|
678 |
return debug_info
|
679 |
|
680 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
681 |
@app.post("/admin/cleanup")
|
682 |
async def cleanup_databases(
|
683 |
include_files: bool = True,
|
|
|
46 |
from typing import List
|
47 |
from src.utils.logger import logger
|
48 |
from config.config import settings
|
49 |
+
from src.vectorstores.chroma_manager import ChromaManager
|
50 |
+
from src.utils.llm_utils import cleanup_vectorstore
|
51 |
|
52 |
os.environ['OAUTHLIB_INSECURE_TRANSPORT'] = '1'
|
53 |
# os.environ["OAUTHLIB_RELAX_TOKEN_SCOPE"] = "1"
|
|
|
680 |
return debug_info
|
681 |
|
682 |
|
683 |
+
@app.post("/admin/reset-chroma")
|
684 |
+
async def reset_chroma_db(api_key: str = Depends(verify_api_key)):
|
685 |
+
"""
|
686 |
+
Reset ChromaDB completely - use with caution
|
687 |
+
|
688 |
+
This endpoint cleans up all resources and recreates ChromaDB
|
689 |
+
"""
|
690 |
+
try:
|
691 |
+
# Reset all vector store resources
|
692 |
+
await cleanup_vectorstore()
|
693 |
+
|
694 |
+
return {
|
695 |
+
"status": "success",
|
696 |
+
"message": "ChromaDB reset complete. You may need to restart the application for changes to take effect.",
|
697 |
+
"details": {
|
698 |
+
"chroma_path": settings.CHROMA_PATH
|
699 |
+
}
|
700 |
+
}
|
701 |
+
|
702 |
+
except Exception as e:
|
703 |
+
logger.error(f"Error resetting ChromaDB: {str(e)}")
|
704 |
+
raise HTTPException(
|
705 |
+
status_code=500,
|
706 |
+
detail=f"Failed to reset ChromaDB: {str(e)}"
|
707 |
+
)
|
708 |
+
|
709 |
+
|
710 |
@app.post("/admin/cleanup")
|
711 |
async def cleanup_databases(
|
712 |
include_files: bool = True,
|
src/utils/__pycache__/drive_document_processor.cpython-312.pyc
CHANGED
Binary files a/src/utils/__pycache__/drive_document_processor.cpython-312.pyc and b/src/utils/__pycache__/drive_document_processor.cpython-312.pyc differ
|
|
src/utils/__pycache__/llm_utils.cpython-312.pyc
CHANGED
Binary files a/src/utils/__pycache__/llm_utils.cpython-312.pyc and b/src/utils/__pycache__/llm_utils.cpython-312.pyc differ
|
|
src/utils/llm_utils.py
CHANGED
@@ -2,6 +2,9 @@
|
|
2 |
from fastapi import HTTPException
|
3 |
from typing import Tuple
|
4 |
|
|
|
|
|
|
|
5 |
from src.llms.openai_llm import OpenAILanguageModel
|
6 |
from src.llms.ollama_llm import OllamaLanguageModel
|
7 |
from src.llms.bert_llm import BERTLanguageModel
|
@@ -9,20 +12,26 @@ from src.llms.falcon_llm import FalconLanguageModel
|
|
9 |
from src.llms.llama_llm import LlamaLanguageModel
|
10 |
from src.embeddings.huggingface_embedding import HuggingFaceEmbedding
|
11 |
from src.vectorstores.chroma_vectorstore import ChromaVectorStore
|
12 |
-
from src.vectorstores.
|
13 |
from src.utils.logger import logger
|
14 |
from config.config import settings
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def get_llm_instance(provider: str):
|
17 |
"""
|
18 |
Get LLM instance based on provider
|
19 |
-
|
20 |
Args:
|
21 |
provider (str): Name of the LLM provider
|
22 |
-
|
23 |
Returns:
|
24 |
BaseLLM: Instance of the LLM
|
25 |
-
|
26 |
Raises:
|
27 |
ValueError: If provider is not supported
|
28 |
"""
|
@@ -33,29 +42,84 @@ def get_llm_instance(provider: str):
|
|
33 |
'falcon': lambda: FalconLanguageModel(),
|
34 |
'llama': lambda: LlamaLanguageModel(),
|
35 |
}
|
36 |
-
|
37 |
if provider not in llm_map:
|
38 |
raise ValueError(f"Unsupported LLM provider: {provider}")
|
39 |
return llm_map[provider]()
|
40 |
|
|
|
41 |
async def get_vector_store() -> Tuple[ChromaVectorStore, HuggingFaceEmbedding]:
|
42 |
"""
|
43 |
-
Get vector store and embedding model instances
|
44 |
-
|
45 |
-
|
46 |
Returns:
|
47 |
Tuple[ChromaVectorStore, HuggingFaceEmbedding]:
|
48 |
Vector store and embedding model instances
|
49 |
"""
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from fastapi import HTTPException
|
3 |
from typing import Tuple
|
4 |
|
5 |
+
import asyncio
|
6 |
+
import logging
|
7 |
+
|
8 |
from src.llms.openai_llm import OpenAILanguageModel
|
9 |
from src.llms.ollama_llm import OllamaLanguageModel
|
10 |
from src.llms.bert_llm import BERTLanguageModel
|
|
|
12 |
from src.llms.llama_llm import LlamaLanguageModel
|
13 |
from src.embeddings.huggingface_embedding import HuggingFaceEmbedding
|
14 |
from src.vectorstores.chroma_vectorstore import ChromaVectorStore
|
15 |
+
from src.vectorstores.chroma_manager import ChromaManager
|
16 |
from src.utils.logger import logger
|
17 |
from config.config import settings
|
18 |
|
19 |
+
# Global vector store instance for reuse
|
20 |
+
_vector_store = None
|
21 |
+
_embedding_model = None
|
22 |
+
_vs_lock = asyncio.Lock()
|
23 |
+
|
24 |
+
|
25 |
def get_llm_instance(provider: str):
|
26 |
"""
|
27 |
Get LLM instance based on provider
|
28 |
+
|
29 |
Args:
|
30 |
provider (str): Name of the LLM provider
|
31 |
+
|
32 |
Returns:
|
33 |
BaseLLM: Instance of the LLM
|
34 |
+
|
35 |
Raises:
|
36 |
ValueError: If provider is not supported
|
37 |
"""
|
|
|
42 |
'falcon': lambda: FalconLanguageModel(),
|
43 |
'llama': lambda: LlamaLanguageModel(),
|
44 |
}
|
45 |
+
|
46 |
if provider not in llm_map:
|
47 |
raise ValueError(f"Unsupported LLM provider: {provider}")
|
48 |
return llm_map[provider]()
|
49 |
|
50 |
+
|
51 |
async def get_vector_store() -> Tuple[ChromaVectorStore, HuggingFaceEmbedding]:
|
52 |
"""
|
53 |
+
Get vector store and embedding model instances with proper initialization
|
54 |
+
|
|
|
55 |
Returns:
|
56 |
Tuple[ChromaVectorStore, HuggingFaceEmbedding]:
|
57 |
Vector store and embedding model instances
|
58 |
"""
|
59 |
+
global _vector_store, _embedding_model, _vs_lock
|
60 |
+
|
61 |
+
async with _vs_lock:
|
62 |
+
if _vector_store is not None and _embedding_model is not None:
|
63 |
+
return _vector_store, _embedding_model
|
64 |
+
|
65 |
+
try:
|
66 |
+
# Load embedding model
|
67 |
+
_embedding_model = HuggingFaceEmbedding(
|
68 |
+
model_name=settings.EMBEDDING_MODEL)
|
69 |
+
logger.info(f"Loaded embedding model: {settings.EMBEDDING_MODEL}")
|
70 |
+
|
71 |
+
# Get ChromaDB client through the manager
|
72 |
+
try:
|
73 |
+
client = await ChromaManager.get_client(
|
74 |
+
persist_directory=settings.CHROMA_PATH,
|
75 |
+
reset_if_needed=True
|
76 |
+
)
|
77 |
+
logger.info("Successfully initialized ChromaDB client")
|
78 |
+
except Exception as e:
|
79 |
+
logger.error(f"Error getting ChromaDB client: {str(e)}")
|
80 |
+
|
81 |
+
# Try to reset ChromaDB completely
|
82 |
+
await ChromaManager.reset_chroma(settings.CHROMA_PATH)
|
83 |
+
client = await ChromaManager.get_client(
|
84 |
+
persist_directory=settings.CHROMA_PATH
|
85 |
+
)
|
86 |
+
logger.info("Recreated ChromaDB client after reset")
|
87 |
+
|
88 |
+
# Create and initialize vector store
|
89 |
+
_vector_store = ChromaVectorStore(
|
90 |
+
embedding_function=_embedding_model.embed_documents,
|
91 |
+
persist_directory=settings.CHROMA_PATH,
|
92 |
+
collection_name="documents",
|
93 |
+
client=client
|
94 |
+
)
|
95 |
+
|
96 |
+
# Initialize the vector store
|
97 |
+
await _vector_store.initialize()
|
98 |
+
logger.info("Vector store successfully initialized")
|
99 |
+
|
100 |
+
return _vector_store, _embedding_model
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
logger.error(f"Error initializing vector store: {str(e)}")
|
104 |
+
raise HTTPException(
|
105 |
+
status_code=500,
|
106 |
+
detail=f"Failed to initialize vector store: {str(e)}"
|
107 |
+
)
|
108 |
+
|
109 |
+
|
110 |
+
async def cleanup_vectorstore():
|
111 |
+
"""
|
112 |
+
Cleanup and reset vector store resources
|
113 |
+
"""
|
114 |
+
global _vector_store, _embedding_model, _vs_lock
|
115 |
+
|
116 |
+
async with _vs_lock:
|
117 |
+
_vector_store = None
|
118 |
+
_embedding_model = None
|
119 |
+
|
120 |
+
# Force garbage collection
|
121 |
+
import gc
|
122 |
+
gc.collect()
|
123 |
+
|
124 |
+
# Reset ChromaDB completely
|
125 |
+
await ChromaManager.reset_chroma(settings.CHROMA_PATH)
|
src/vectorstores/__pycache__/chroma_vectorstore.cpython-312.pyc
CHANGED
Binary files a/src/vectorstores/__pycache__/chroma_vectorstore.cpython-312.pyc and b/src/vectorstores/__pycache__/chroma_vectorstore.cpython-312.pyc differ
|
|
src/vectorstores/__pycache__/optimized_vectorstore.cpython-312.pyc
CHANGED
Binary files a/src/vectorstores/__pycache__/optimized_vectorstore.cpython-312.pyc and b/src/vectorstores/__pycache__/optimized_vectorstore.cpython-312.pyc differ
|
|
src/vectorstores/chroma_manager.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# src/vectorstores/chroma_manager.py
|
2 |
+
"""
|
3 |
+
ChromaDB connection manager to ensure consistent settings and connection handling
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import shutil
|
8 |
+
import asyncio
|
9 |
+
import logging
|
10 |
+
import chromadb
|
11 |
+
from chromadb.config import Settings
|
12 |
+
from typing import Optional, Dict, Any
|
13 |
+
|
14 |
+
# Global connection lock and instance
|
15 |
+
_instance_lock = asyncio.Lock()
|
16 |
+
_chroma_instance = None
|
17 |
+
_collection_lock = asyncio.Lock()
|
18 |
+
_collection_instances = {}
|
19 |
+
|
20 |
+
|
21 |
+
class ChromaManager:
|
22 |
+
"""Singleton manager for ChromaDB connections"""
|
23 |
+
|
24 |
+
@staticmethod
|
25 |
+
async def get_client(
|
26 |
+
persist_directory: str,
|
27 |
+
reset_if_needed: bool = False
|
28 |
+
) -> chromadb.PersistentClient:
|
29 |
+
"""
|
30 |
+
Get a shared ChromaDB client with consistent settings
|
31 |
+
|
32 |
+
Args:
|
33 |
+
persist_directory (str): Directory to persist ChromaDB
|
34 |
+
reset_if_needed (bool): Whether to reset the database if connection fails
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
chromadb.PersistentClient: Shared client instance
|
38 |
+
"""
|
39 |
+
global _chroma_instance, _instance_lock
|
40 |
+
|
41 |
+
async with _instance_lock:
|
42 |
+
if _chroma_instance is not None:
|
43 |
+
return _chroma_instance
|
44 |
+
|
45 |
+
# Try to create a client
|
46 |
+
try:
|
47 |
+
settings = Settings(
|
48 |
+
allow_reset=True,
|
49 |
+
anonymized_telemetry=False,
|
50 |
+
is_persistent=True
|
51 |
+
)
|
52 |
+
|
53 |
+
_chroma_instance = chromadb.PersistentClient(
|
54 |
+
path=persist_directory,
|
55 |
+
settings=settings
|
56 |
+
)
|
57 |
+
logging.info(
|
58 |
+
f"Successfully created ChromaDB client at {persist_directory}")
|
59 |
+
return _chroma_instance
|
60 |
+
|
61 |
+
except ValueError as e:
|
62 |
+
if "already exists" in str(e) and reset_if_needed:
|
63 |
+
logging.warning(
|
64 |
+
f"ChromaDB instance exists with different settings. Attempting reset: {str(e)}")
|
65 |
+
await ChromaManager.reset_chroma(persist_directory)
|
66 |
+
|
67 |
+
# Try again after reset
|
68 |
+
_chroma_instance = chromadb.PersistentClient(
|
69 |
+
path=persist_directory,
|
70 |
+
settings=settings
|
71 |
+
)
|
72 |
+
return _chroma_instance
|
73 |
+
raise
|
74 |
+
|
75 |
+
@staticmethod
|
76 |
+
async def get_or_create_collection(
|
77 |
+
client: chromadb.PersistentClient,
|
78 |
+
collection_name: str,
|
79 |
+
embedding_dimension: int = 1024
|
80 |
+
):
|
81 |
+
"""
|
82 |
+
Get or create a collection with proper error handling
|
83 |
+
|
84 |
+
Args:
|
85 |
+
client (chromadb.PersistentClient): ChromaDB client
|
86 |
+
collection_name (str): Name of the collection
|
87 |
+
embedding_dimension (int): Dimension of embeddings
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
Collection: ChromaDB collection
|
91 |
+
"""
|
92 |
+
global _collection_lock, _collection_instances
|
93 |
+
|
94 |
+
# Use just the collection name as key
|
95 |
+
collection_key = collection_name
|
96 |
+
|
97 |
+
async with _collection_lock:
|
98 |
+
if collection_key in _collection_instances:
|
99 |
+
return _collection_instances[collection_key]
|
100 |
+
|
101 |
+
try:
|
102 |
+
# Try to get existing collection
|
103 |
+
collection = client.get_collection(
|
104 |
+
name=collection_name,
|
105 |
+
embedding_function=None
|
106 |
+
)
|
107 |
+
logging.info(f"Found existing collection: {collection_name}")
|
108 |
+
_collection_instances[collection_key] = collection
|
109 |
+
return collection
|
110 |
+
|
111 |
+
except Exception as e:
|
112 |
+
logging.info(
|
113 |
+
f"Collection {collection_name} does not exist, creating new one: {str(e)}")
|
114 |
+
|
115 |
+
# Create new collection with minimal metadata
|
116 |
+
# Removed the problematic "hnsw:dim" parameter
|
117 |
+
try:
|
118 |
+
collection = client.create_collection(
|
119 |
+
name=collection_name,
|
120 |
+
metadata={"hnsw:space": "cosine"}
|
121 |
+
)
|
122 |
+
except Exception as create_error:
|
123 |
+
# If that fails too, try with no metadata
|
124 |
+
logging.warning(
|
125 |
+
f"Error creating collection with metadata: {str(create_error)}")
|
126 |
+
collection = client.create_collection(
|
127 |
+
name=collection_name
|
128 |
+
)
|
129 |
+
|
130 |
+
_collection_instances[collection_key] = collection
|
131 |
+
return collection
|
132 |
+
|
133 |
+
@staticmethod
|
134 |
+
async def reset_chroma(persist_directory: str):
|
135 |
+
"""
|
136 |
+
Reset ChromaDB completely by removing the directory
|
137 |
+
|
138 |
+
Args:
|
139 |
+
persist_directory (str): Directory to remove
|
140 |
+
"""
|
141 |
+
global _chroma_instance, _collection_instances
|
142 |
+
|
143 |
+
# Clear global instances first
|
144 |
+
_chroma_instance = None
|
145 |
+
_collection_instances = {}
|
146 |
+
|
147 |
+
try:
|
148 |
+
# Force garbage collection to release file handles
|
149 |
+
import gc
|
150 |
+
gc.collect()
|
151 |
+
|
152 |
+
# Remove the entire directory
|
153 |
+
if os.path.exists(persist_directory):
|
154 |
+
shutil.rmtree(persist_directory)
|
155 |
+
logging.info(
|
156 |
+
f"Removed ChromaDB directory: {persist_directory}")
|
157 |
+
|
158 |
+
# Recreate empty directory
|
159 |
+
os.makedirs(persist_directory, exist_ok=True)
|
160 |
+
logging.info(
|
161 |
+
f"Created fresh ChromaDB directory: {persist_directory}")
|
162 |
+
|
163 |
+
except Exception as e:
|
164 |
+
logging.error(f"Error resetting ChromaDB: {str(e)}")
|
165 |
+
raise
|
src/vectorstores/chroma_settings.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# src/vectorstores/chroma_settings.py
|
2 |
+
"""
|
3 |
+
Shared settings for ChromaDB to ensure consistency across the application
|
4 |
+
"""
|
5 |
+
|
6 |
+
import chromadb
|
7 |
+
|
8 |
+
|
9 |
+
def get_chroma_settings():
|
10 |
+
"""Get consistent ChromaDB settings"""
|
11 |
+
return chromadb.Settings(
|
12 |
+
allow_reset=True,
|
13 |
+
is_persistent=True,
|
14 |
+
anonymized_telemetry=False
|
15 |
+
)
|
src/vectorstores/chroma_vectorstore.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
# src/vectorstores/chroma_vectorstore.py
|
|
|
2 |
import chromadb
|
3 |
from typing import List, Callable, Any, Dict, Optional
|
4 |
-
from chromadb.config import Settings
|
5 |
import logging
|
|
|
6 |
|
7 |
from .base_vectorstore import BaseVectorStore
|
|
|
8 |
|
9 |
|
10 |
class ChromaVectorStore(BaseVectorStore):
|
@@ -13,7 +15,8 @@ class ChromaVectorStore(BaseVectorStore):
|
|
13 |
embedding_function: Callable[[List[str]], List[List[float]]],
|
14 |
persist_directory: str = './chroma_db',
|
15 |
collection_name: str = "documents",
|
16 |
-
client_settings: Optional[Dict[str, Any]] = None
|
|
|
17 |
):
|
18 |
"""
|
19 |
Initialize Chroma Vector Store
|
@@ -23,25 +26,78 @@ class ChromaVectorStore(BaseVectorStore):
|
|
23 |
persist_directory (str): Directory to persist the vector store
|
24 |
collection_name (str): Name of the collection to use
|
25 |
client_settings (Optional[Dict[str, Any]]): Additional settings for ChromaDB client
|
|
|
26 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
try:
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
self.client = chromadb.PersistentClient(settings=settings)
|
34 |
-
self.collection = self.client.get_or_create_collection(
|
35 |
-
name=collection_name,
|
36 |
-
# Using cosine similarity by default
|
37 |
-
metadata={"hnsw:space": "cosine"}
|
38 |
-
)
|
39 |
-
self.embedding_function = embedding_function
|
40 |
except Exception as e:
|
41 |
-
logging.error(
|
|
|
|
|
|
|
|
|
42 |
raise
|
43 |
|
44 |
-
def
|
|
|
|
|
|
|
|
|
|
|
45 |
self,
|
46 |
documents: List[str],
|
47 |
embeddings: Optional[List[List[float]]] = None,
|
@@ -49,7 +105,7 @@ class ChromaVectorStore(BaseVectorStore):
|
|
49 |
ids: Optional[List[str]] = None
|
50 |
) -> None:
|
51 |
"""
|
52 |
-
Add documents
|
53 |
|
54 |
Args:
|
55 |
documents (List[str]): List of document texts
|
@@ -57,48 +113,141 @@ class ChromaVectorStore(BaseVectorStore):
|
|
57 |
metadatas (Optional[List[Dict[str, Any]]]): Metadata for each document
|
58 |
ids (Optional[List[str]]): Custom IDs for the documents
|
59 |
"""
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
66 |
embeddings = self.embedding_function(documents)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
if len(documents) != len(embeddings):
|
69 |
-
raise ValueError(
|
70 |
-
"Number of documents and embeddings must match")
|
71 |
-
|
72 |
-
# Use provided IDs or generate them
|
73 |
-
doc_ids = ids if ids is not None else [
|
74 |
-
f"doc_{i}" for i in range(len(documents))]
|
75 |
-
|
76 |
-
# Prepare add parameters
|
77 |
-
add_params = {
|
78 |
-
"documents": documents,
|
79 |
-
"embeddings": embeddings,
|
80 |
-
"ids": doc_ids
|
81 |
-
}
|
82 |
-
|
83 |
-
# Only include metadatas if provided
|
84 |
-
if metadatas is not None:
|
85 |
-
if len(metadatas) != len(documents):
|
86 |
-
raise ValueError(
|
87 |
-
"Number of documents and metadatas must match")
|
88 |
-
add_params["metadatas"] = metadatas
|
89 |
-
|
90 |
-
self.collection.add(**add_params)
|
91 |
except Exception as e:
|
92 |
-
logging.error(
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
self,
|
97 |
query_embedding: List[float],
|
98 |
top_k: int = 3,
|
99 |
**kwargs
|
100 |
) -> List[Dict[str, Any]]:
|
101 |
-
"""
|
|
|
|
|
|
|
|
|
102 |
try:
|
103 |
# Get more initial results to account for sequential chunks
|
104 |
results = self.collection.query(
|
@@ -177,19 +326,122 @@ class ChromaVectorStore(BaseVectorStore):
|
|
177 |
logging.error(f"Error in similarity search: {str(e)}")
|
178 |
raise
|
179 |
|
180 |
-
def
|
181 |
self,
|
182 |
-
|
|
|
|
|
183 |
) -> List[Dict[str, Any]]:
|
184 |
"""
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
-
|
191 |
-
|
|
|
|
|
192 |
"""
|
|
|
|
|
|
|
|
|
193 |
try:
|
194 |
include = ["documents", "metadatas"]
|
195 |
if include_embeddings:
|
@@ -227,16 +479,70 @@ class ChromaVectorStore(BaseVectorStore):
|
|
227 |
f"Error retrieving documents from ChromaDB: {str(e)}")
|
228 |
raise
|
229 |
|
230 |
-
def
|
|
|
|
|
|
|
231 |
"""
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
-
|
238 |
-
List[Dict[str, Any]]: List of document chunks with their metadata
|
239 |
"""
|
|
|
|
|
|
|
|
|
240 |
try:
|
241 |
results = self.collection.get(
|
242 |
where={"document_id": document_id},
|
@@ -263,18 +569,53 @@ class ChromaVectorStore(BaseVectorStore):
|
|
263 |
logging.error(f"Error retrieving document chunks: {str(e)}")
|
264 |
raise
|
265 |
|
266 |
-
def
|
|
|
|
|
267 |
"""
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
-
|
271 |
-
document_id (str): ID of the document to delete
|
272 |
"""
|
|
|
|
|
|
|
|
|
273 |
try:
|
274 |
# Get all chunks with the given document_id
|
275 |
results = self.collection.get(
|
276 |
where={"document_id": document_id},
|
277 |
-
include=["
|
278 |
)
|
279 |
|
280 |
if not results or 'ids' not in results:
|
@@ -282,11 +623,28 @@ class ChromaVectorStore(BaseVectorStore):
|
|
282 |
return
|
283 |
|
284 |
# Delete all chunks associated with the document
|
285 |
-
|
286 |
-
f"{document_id}-chunk-{i}" for i in range(len(results['metadatas']))]
|
287 |
-
self.collection.delete(ids=chunk_ids)
|
288 |
|
289 |
except Exception as e:
|
290 |
logging.error(
|
291 |
f"Error deleting document {document_id} from ChromaDB: {str(e)}")
|
292 |
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# src/vectorstores/chroma_vectorstore.py
|
2 |
+
from pathlib import Path
|
3 |
import chromadb
|
4 |
from typing import List, Callable, Any, Dict, Optional
|
|
|
5 |
import logging
|
6 |
+
import asyncio
|
7 |
|
8 |
from .base_vectorstore import BaseVectorStore
|
9 |
+
from .chroma_manager import ChromaManager
|
10 |
|
11 |
|
12 |
class ChromaVectorStore(BaseVectorStore):
|
|
|
15 |
embedding_function: Callable[[List[str]], List[List[float]]],
|
16 |
persist_directory: str = './chroma_db',
|
17 |
collection_name: str = "documents",
|
18 |
+
client_settings: Optional[Dict[str, Any]] = None,
|
19 |
+
client=None # Allow passing an existing client
|
20 |
):
|
21 |
"""
|
22 |
Initialize Chroma Vector Store
|
|
|
26 |
persist_directory (str): Directory to persist the vector store
|
27 |
collection_name (str): Name of the collection to use
|
28 |
client_settings (Optional[Dict[str, Any]]): Additional settings for ChromaDB client
|
29 |
+
client: Optional existing ChromaDB client to use
|
30 |
"""
|
31 |
+
self.embedding_function = embedding_function
|
32 |
+
self.persist_directory = persist_directory
|
33 |
+
self.collection_name = collection_name
|
34 |
+
self.client = client # Store client for later initialization
|
35 |
+
|
36 |
+
# Will be populated during async initialization
|
37 |
+
self.collection = None
|
38 |
+
self.initialized = False
|
39 |
+
|
40 |
+
async def initialize(self):
|
41 |
+
"""Asynchronously initialize the vector store with enhanced error handling"""
|
42 |
+
if self.initialized:
|
43 |
+
return
|
44 |
+
|
45 |
try:
|
46 |
+
# Get client via manager if not provided
|
47 |
+
if self.client is None:
|
48 |
+
self.client = await ChromaManager.get_client(self.persist_directory)
|
49 |
+
|
50 |
+
# Validate client
|
51 |
+
if not self.client:
|
52 |
+
raise ValueError("Failed to obtain ChromaDB client")
|
53 |
+
|
54 |
+
# Get or create collection with more robust handling
|
55 |
+
try:
|
56 |
+
self.collection = await ChromaManager.get_or_create_collection(
|
57 |
+
client=self.client,
|
58 |
+
collection_name=self.collection_name,
|
59 |
+
embedding_dimension=1024 # Default for most models
|
60 |
+
)
|
61 |
+
except Exception as collection_error:
|
62 |
+
logging.error(
|
63 |
+
f"Error creating collection: {str(collection_error)}")
|
64 |
+
|
65 |
+
# Try to reset and recreate
|
66 |
+
try:
|
67 |
+
# Attempt to delete existing collection
|
68 |
+
self.client.delete_collection(self.collection_name)
|
69 |
+
except:
|
70 |
+
pass
|
71 |
+
|
72 |
+
# Recreate collection
|
73 |
+
self.collection = self.client.create_collection(
|
74 |
+
name=self.collection_name,
|
75 |
+
metadata={"hnsw:space": "cosine"}
|
76 |
+
)
|
77 |
+
|
78 |
+
# Additional validation
|
79 |
+
if not self.collection:
|
80 |
+
raise ValueError(
|
81 |
+
"Failed to create or obtain ChromaDB collection")
|
82 |
+
|
83 |
+
self.initialized = True
|
84 |
+
logging.info(
|
85 |
+
f"ChromaVectorStore initialized with collection: {self.collection_name}")
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
except Exception as e:
|
88 |
+
logging.error(
|
89 |
+
f"Critical error initializing ChromaVectorStore: {str(e)}")
|
90 |
+
# Reset initialization state
|
91 |
+
self.initialized = False
|
92 |
+
self.collection = None
|
93 |
raise
|
94 |
|
95 |
+
async def _ensure_initialized(self):
|
96 |
+
"""Make sure the vector store is initialized before use"""
|
97 |
+
if not self.initialized:
|
98 |
+
await self.initialize()
|
99 |
+
|
100 |
+
async def add_documents_async(
|
101 |
self,
|
102 |
documents: List[str],
|
103 |
embeddings: Optional[List[List[float]]] = None,
|
|
|
105 |
ids: Optional[List[str]] = None
|
106 |
) -> None:
|
107 |
"""
|
108 |
+
Add documents asynchronously with enhanced error handling
|
109 |
|
110 |
Args:
|
111 |
documents (List[str]): List of document texts
|
|
|
113 |
metadatas (Optional[List[Dict[str, Any]]]): Metadata for each document
|
114 |
ids (Optional[List[str]]): Custom IDs for the documents
|
115 |
"""
|
116 |
+
await self._ensure_initialized()
|
117 |
+
|
118 |
+
if not documents:
|
119 |
+
logging.warning("No documents provided to add_documents")
|
120 |
+
return
|
121 |
+
|
122 |
+
# Validate input lists
|
123 |
+
if embeddings and len(documents) != len(embeddings):
|
124 |
+
raise ValueError("Number of documents and embeddings must match")
|
125 |
|
126 |
+
if metadatas and len(documents) != len(metadatas):
|
127 |
+
raise ValueError("Number of documents and metadatas must match")
|
128 |
+
|
129 |
+
# Generate embeddings if not provided
|
130 |
+
if not embeddings:
|
131 |
+
try:
|
132 |
embeddings = self.embedding_function(documents)
|
133 |
+
except Exception as e:
|
134 |
+
logging.error(f"Error generating embeddings: {str(e)}")
|
135 |
+
raise
|
136 |
+
|
137 |
+
# Use provided IDs or generate them
|
138 |
+
if not ids:
|
139 |
+
ids = [f"doc_{i}" for i in range(len(documents))]
|
140 |
+
|
141 |
+
# Ensure collection exists and is usable
|
142 |
+
if not self.collection:
|
143 |
+
logging.error("ChromaDB collection is not initialized")
|
144 |
+
await self.initialize()
|
145 |
+
|
146 |
+
# Prepare add parameters
|
147 |
+
add_params = {
|
148 |
+
"documents": documents,
|
149 |
+
"embeddings": embeddings,
|
150 |
+
"ids": ids
|
151 |
+
}
|
152 |
+
|
153 |
+
# Add metadatas if provided
|
154 |
+
if metadatas is not None:
|
155 |
+
add_params["metadatas"] = metadatas
|
156 |
+
|
157 |
+
try:
|
158 |
+
# Add documents to collection with retry mechanism
|
159 |
+
max_retries = 3
|
160 |
+
for attempt in range(max_retries):
|
161 |
+
try:
|
162 |
+
# Clear any cached state
|
163 |
+
import gc
|
164 |
+
gc.collect()
|
165 |
+
|
166 |
+
# Attempt to add documents
|
167 |
+
self.collection.add(**add_params)
|
168 |
+
logging.info(
|
169 |
+
f"Successfully added {len(documents)} documents")
|
170 |
+
break
|
171 |
+
except (StopIteration, RuntimeError) as retry_error:
|
172 |
+
if attempt < max_retries - 1:
|
173 |
+
logging.warning(
|
174 |
+
f"Retry attempt {attempt + 1}: {str(retry_error)}")
|
175 |
+
# Optional: Add a small delay between retries
|
176 |
+
await asyncio.sleep(0.5)
|
177 |
+
else:
|
178 |
+
logging.error(
|
179 |
+
f"Failed to add documents after {max_retries} attempts")
|
180 |
+
raise
|
181 |
+
|
182 |
+
except (StopIteration, RuntimeError) as retry_error:
|
183 |
+
if attempt < max_retries - 1:
|
184 |
+
logging.warning(
|
185 |
+
f"Retry attempt {attempt + 1}: {str(retry_error)}")
|
186 |
+
# Optional: Add a small delay between retries
|
187 |
+
await asyncio.sleep(0.5)
|
188 |
+
else:
|
189 |
+
logging.error(
|
190 |
+
f"Failed to add documents after {max_retries} attempts")
|
191 |
+
raise
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
except Exception as e:
|
194 |
+
logging.error(
|
195 |
+
f"Unexpected error adding documents to ChromaDB: {str(e)}")
|
196 |
+
|
197 |
+
# Additional debugging information
|
198 |
+
try:
|
199 |
+
logging.info(f"Collection status: {self.collection}")
|
200 |
+
logging.info(f"Documents count: {len(documents)}")
|
201 |
+
logging.info(
|
202 |
+
f"Embeddings count: {len(add_params.get('embeddings', []))}")
|
203 |
+
logging.info(
|
204 |
+
f"Metadatas count: {len(add_params.get('metadatas', []))}")
|
205 |
+
logging.info(f"IDs count: {len(add_params.get('ids', []))}")
|
206 |
+
except Exception as debug_error:
|
207 |
+
logging.error(f"Error during debugging: {str(debug_error)}")
|
208 |
|
209 |
+
def add_documents(
|
210 |
+
self,
|
211 |
+
documents: List[str],
|
212 |
+
embeddings: Optional[List[List[float]]] = None,
|
213 |
+
metadatas: Optional[List[Dict[str, Any]]] = None,
|
214 |
+
ids: Optional[List[str]] = None
|
215 |
+
) -> None:
|
216 |
+
"""
|
217 |
+
Synchronous wrapper for add_documents_async
|
218 |
+
"""
|
219 |
+
# Create and run a new event loop if needed
|
220 |
+
try:
|
221 |
+
loop = asyncio.get_event_loop()
|
222 |
+
if loop.is_running():
|
223 |
+
# Create a future that can be run in the existing loop
|
224 |
+
asyncio.create_task(self.add_documents_async(
|
225 |
+
documents, embeddings, metadatas, ids
|
226 |
+
))
|
227 |
+
else:
|
228 |
+
# Run in a new event loop
|
229 |
+
loop.run_until_complete(self.add_documents_async(
|
230 |
+
documents, embeddings, metadatas, ids
|
231 |
+
))
|
232 |
+
except RuntimeError:
|
233 |
+
# No event loop, create a new one
|
234 |
+
loop = asyncio.new_event_loop()
|
235 |
+
asyncio.set_event_loop(loop)
|
236 |
+
loop.run_until_complete(self.add_documents_async(
|
237 |
+
documents, embeddings, metadatas, ids
|
238 |
+
))
|
239 |
+
|
240 |
+
async def similarity_search_async(
|
241 |
self,
|
242 |
query_embedding: List[float],
|
243 |
top_k: int = 3,
|
244 |
**kwargs
|
245 |
) -> List[Dict[str, Any]]:
|
246 |
+
"""
|
247 |
+
Perform similarity search asynchronously
|
248 |
+
"""
|
249 |
+
await self._ensure_initialized()
|
250 |
+
|
251 |
try:
|
252 |
# Get more initial results to account for sequential chunks
|
253 |
results = self.collection.query(
|
|
|
326 |
logging.error(f"Error in similarity search: {str(e)}")
|
327 |
raise
|
328 |
|
329 |
+
def similarity_search(
|
330 |
self,
|
331 |
+
query_embedding: List[float],
|
332 |
+
top_k: int = 3,
|
333 |
+
**kwargs
|
334 |
) -> List[Dict[str, Any]]:
|
335 |
"""
|
336 |
+
Synchronous wrapper for similarity_search_async
|
337 |
+
"""
|
338 |
+
try:
|
339 |
+
loop = asyncio.get_event_loop()
|
340 |
+
if loop.is_running():
|
341 |
+
# We're in an async context, but need to process directly
|
342 |
+
try:
|
343 |
+
# Get more initial results to account for sequential chunks
|
344 |
+
results = self.collection.query(
|
345 |
+
query_embeddings=[query_embedding],
|
346 |
+
n_results=max(top_k * 2, 10),
|
347 |
+
include=['documents', 'metadatas', 'distances']
|
348 |
+
)
|
349 |
+
|
350 |
+
if not results or 'documents' not in results:
|
351 |
+
return []
|
352 |
+
|
353 |
+
formatted_results = []
|
354 |
+
documents = results['documents'][0]
|
355 |
+
metadatas = results['metadatas'][0]
|
356 |
+
distances = results['distances'][0]
|
357 |
+
|
358 |
+
# Group chunks by document_id
|
359 |
+
doc_chunks = {}
|
360 |
+
for doc, meta, dist in zip(documents, metadatas, distances):
|
361 |
+
doc_id = meta.get('document_id')
|
362 |
+
chunk_index = meta.get('chunk_index', 0)
|
363 |
+
|
364 |
+
if doc_id not in doc_chunks:
|
365 |
+
doc_chunks[doc_id] = []
|
366 |
+
|
367 |
+
doc_chunks[doc_id].append({
|
368 |
+
'text': doc,
|
369 |
+
'metadata': meta,
|
370 |
+
'score': 1.0 - dist,
|
371 |
+
'chunk_index': chunk_index
|
372 |
+
})
|
373 |
+
|
374 |
+
# Process each document's chunks
|
375 |
+
for doc_id, chunks in doc_chunks.items():
|
376 |
+
# Sort chunks by index
|
377 |
+
chunks.sort(key=lambda x: x['chunk_index'])
|
378 |
+
|
379 |
+
# Find sequences of chunks with good scores
|
380 |
+
good_sequences = []
|
381 |
+
current_sequence = []
|
382 |
|
383 |
+
for chunk in chunks:
|
384 |
+
if chunk['score'] > 0.3: # Adjust threshold as needed
|
385 |
+
if not current_sequence or \
|
386 |
+
chunk['chunk_index'] == current_sequence[-1]['chunk_index'] + 1:
|
387 |
+
current_sequence.append(chunk)
|
388 |
+
else:
|
389 |
+
if current_sequence:
|
390 |
+
good_sequences.append(current_sequence)
|
391 |
+
current_sequence = [chunk]
|
392 |
+
else:
|
393 |
+
if current_sequence:
|
394 |
+
good_sequences.append(current_sequence)
|
395 |
+
current_sequence = []
|
396 |
+
|
397 |
+
if current_sequence:
|
398 |
+
good_sequences.append(current_sequence)
|
399 |
+
|
400 |
+
# Add best sequences to results
|
401 |
+
for sequence in good_sequences:
|
402 |
+
avg_score = sum(c['score']
|
403 |
+
for c in sequence) / len(sequence)
|
404 |
+
combined_text = ' '.join(
|
405 |
+
c['text'] for c in sequence)
|
406 |
+
|
407 |
+
formatted_results.append({
|
408 |
+
'text': combined_text,
|
409 |
+
'metadata': sequence[0]['metadata'],
|
410 |
+
'score': avg_score
|
411 |
+
})
|
412 |
+
|
413 |
+
# Sort by score and return top_k
|
414 |
+
formatted_results.sort(
|
415 |
+
key=lambda x: x['score'], reverse=True)
|
416 |
+
return formatted_results[:top_k]
|
417 |
+
|
418 |
+
except Exception as e:
|
419 |
+
logging.error(
|
420 |
+
f"Error in direct similarity search: {str(e)}")
|
421 |
+
return []
|
422 |
+
else:
|
423 |
+
# Run in existing loop
|
424 |
+
return loop.run_until_complete(
|
425 |
+
self.similarity_search_async(
|
426 |
+
query_embedding, top_k, **kwargs)
|
427 |
+
)
|
428 |
+
except RuntimeError:
|
429 |
+
# No event loop, create a new one
|
430 |
+
loop = asyncio.new_event_loop()
|
431 |
+
asyncio.set_event_loop(loop)
|
432 |
+
return loop.run_until_complete(
|
433 |
+
self.similarity_search_async(query_embedding, top_k, **kwargs)
|
434 |
+
)
|
435 |
|
436 |
+
async def get_all_documents_async(
|
437 |
+
self,
|
438 |
+
include_embeddings: bool = False
|
439 |
+
) -> List[Dict[str, Any]]:
|
440 |
"""
|
441 |
+
Retrieve all documents asynchronously
|
442 |
+
"""
|
443 |
+
await self._ensure_initialized()
|
444 |
+
|
445 |
try:
|
446 |
include = ["documents", "metadatas"]
|
447 |
if include_embeddings:
|
|
|
479 |
f"Error retrieving documents from ChromaDB: {str(e)}")
|
480 |
raise
|
481 |
|
482 |
+
def get_all_documents(
|
483 |
+
self,
|
484 |
+
include_embeddings: bool = False
|
485 |
+
) -> List[Dict[str, Any]]:
|
486 |
"""
|
487 |
+
Synchronous wrapper for get_all_documents_async
|
488 |
+
"""
|
489 |
+
try:
|
490 |
+
loop = asyncio.get_event_loop()
|
491 |
+
if loop.is_running():
|
492 |
+
# We're in an async context, but need to return synchronously
|
493 |
+
# Process the results just like in the async version
|
494 |
+
try:
|
495 |
+
include = ["documents", "metadatas"]
|
496 |
+
if include_embeddings:
|
497 |
+
include.append("embeddings")
|
498 |
+
|
499 |
+
results = self.collection.get(
|
500 |
+
include=include
|
501 |
+
)
|
502 |
+
|
503 |
+
if not results or 'documents' not in results:
|
504 |
+
return []
|
505 |
+
|
506 |
+
documents = []
|
507 |
+
for i in range(len(results['documents'])):
|
508 |
+
doc = {
|
509 |
+
'id': str(i), # Generate sequential IDs
|
510 |
+
'text': results['documents'][i],
|
511 |
+
}
|
512 |
+
|
513 |
+
if include_embeddings and 'embeddings' in results:
|
514 |
+
doc['embedding'] = results['embeddings'][i]
|
515 |
+
|
516 |
+
if 'metadatas' in results and results['metadatas'][i]:
|
517 |
+
doc['metadata'] = results['metadatas'][i]
|
518 |
+
|
519 |
+
# Use document_id from metadata if available
|
520 |
+
if 'document_id' in results['metadatas'][i]:
|
521 |
+
doc['id'] = results['metadatas'][i]['document_id']
|
522 |
+
|
523 |
+
documents.append(doc)
|
524 |
+
|
525 |
+
return documents
|
526 |
+
except:
|
527 |
+
return []
|
528 |
+
else:
|
529 |
+
return loop.run_until_complete(
|
530 |
+
self.get_all_documents_async(include_embeddings)
|
531 |
+
)
|
532 |
+
except RuntimeError:
|
533 |
+
# No event loop, create a new one
|
534 |
+
loop = asyncio.new_event_loop()
|
535 |
+
asyncio.set_event_loop(loop)
|
536 |
+
return loop.run_until_complete(
|
537 |
+
self.get_all_documents_async(include_embeddings)
|
538 |
+
)
|
539 |
|
540 |
+
async def get_document_chunks_async(self, document_id: str) -> List[Dict[str, Any]]:
|
|
|
541 |
"""
|
542 |
+
Retrieve all chunks for a specific document asynchronously
|
543 |
+
"""
|
544 |
+
await self._ensure_initialized()
|
545 |
+
|
546 |
try:
|
547 |
results = self.collection.get(
|
548 |
where={"document_id": document_id},
|
|
|
569 |
logging.error(f"Error retrieving document chunks: {str(e)}")
|
570 |
raise
|
571 |
|
572 |
+
def get_document_chunks(self, document_id: str) -> List[Dict[str, Any]]:
|
573 |
+
"""
|
574 |
+
Synchronous wrapper for get_document_chunks_async
|
575 |
"""
|
576 |
+
try:
|
577 |
+
loop = asyncio.get_event_loop()
|
578 |
+
if loop.is_running():
|
579 |
+
# Fall back to direct query which may fail
|
580 |
+
try:
|
581 |
+
results = self.collection.get(
|
582 |
+
where={"document_id": document_id},
|
583 |
+
include=["documents", "metadatas"]
|
584 |
+
)
|
585 |
+
|
586 |
+
chunks = []
|
587 |
+
for i in range(len(results['documents'])):
|
588 |
+
chunk = {
|
589 |
+
'text': results['documents'][i],
|
590 |
+
'metadata': results['metadatas'][i] if results.get('metadatas') else None
|
591 |
+
}
|
592 |
+
chunks.append(chunk)
|
593 |
+
return chunks
|
594 |
+
except:
|
595 |
+
return []
|
596 |
+
else:
|
597 |
+
return loop.run_until_complete(
|
598 |
+
self.get_document_chunks_async(document_id)
|
599 |
+
)
|
600 |
+
except RuntimeError:
|
601 |
+
# No event loop, create a new one
|
602 |
+
loop = asyncio.new_event_loop()
|
603 |
+
asyncio.set_event_loop(loop)
|
604 |
+
return loop.run_until_complete(
|
605 |
+
self.get_document_chunks_async(document_id)
|
606 |
+
)
|
607 |
|
608 |
+
async def delete_document_async(self, document_id: str) -> None:
|
|
|
609 |
"""
|
610 |
+
Delete all chunks associated with a document_id asynchronously
|
611 |
+
"""
|
612 |
+
await self._ensure_initialized()
|
613 |
+
|
614 |
try:
|
615 |
# Get all chunks with the given document_id
|
616 |
results = self.collection.get(
|
617 |
where={"document_id": document_id},
|
618 |
+
include=["ids"]
|
619 |
)
|
620 |
|
621 |
if not results or 'ids' not in results:
|
|
|
623 |
return
|
624 |
|
625 |
# Delete all chunks associated with the document
|
626 |
+
self.collection.delete(ids=results['ids'])
|
|
|
|
|
627 |
|
628 |
except Exception as e:
|
629 |
logging.error(
|
630 |
f"Error deleting document {document_id} from ChromaDB: {str(e)}")
|
631 |
raise
|
632 |
+
|
633 |
+
def delete_document(self, document_id: str) -> None:
|
634 |
+
"""
|
635 |
+
Synchronous wrapper for delete_document_async
|
636 |
+
"""
|
637 |
+
try:
|
638 |
+
loop = asyncio.get_event_loop()
|
639 |
+
if loop.is_running():
|
640 |
+
# Create a future that can be run in the existing loop
|
641 |
+
asyncio.create_task(self.delete_document_async(document_id))
|
642 |
+
else:
|
643 |
+
# Run in a new event loop
|
644 |
+
loop.run_until_complete(
|
645 |
+
self.delete_document_async(document_id))
|
646 |
+
except RuntimeError:
|
647 |
+
# No event loop, create a new one
|
648 |
+
loop = asyncio.new_event_loop()
|
649 |
+
asyncio.set_event_loop(loop)
|
650 |
+
loop.run_until_complete(self.delete_document_async(document_id))
|
src/vectorstores/optimized_vectorstore.py
CHANGED
@@ -13,6 +13,7 @@ from .chroma_vectorstore import ChromaVectorStore
|
|
13 |
from src.embeddings.huggingface_embedding import HuggingFaceEmbedding
|
14 |
from src.utils.logger import logger
|
15 |
from config.config import settings
|
|
|
16 |
|
17 |
|
18 |
class OptimizedVectorStore(ChromaVectorStore):
|
@@ -56,30 +57,21 @@ class OptimizedVectorStore(ChromaVectorStore):
|
|
56 |
# Clean up existing database if dimensions don't match
|
57 |
await self._cleanup_if_needed(required_dim)
|
58 |
|
59 |
-
# Create ChromaDB client with
|
60 |
client = chromadb.PersistentClient(
|
61 |
path=self._persist_directory,
|
62 |
-
settings=
|
63 |
-
allow_reset=True,
|
64 |
-
is_persistent=True,
|
65 |
-
anonymized_telemetry=False
|
66 |
-
)
|
67 |
)
|
68 |
|
69 |
# Create new collection with correct dimensions
|
70 |
-
collection =
|
71 |
-
name=self._collection_name,
|
72 |
-
metadata={
|
73 |
-
"hnsw:space": "cosine",
|
74 |
-
"hnsw:dim": required_dim
|
75 |
-
}
|
76 |
-
)
|
77 |
|
78 |
# Initialize parent class
|
79 |
super().__init__(
|
80 |
embedding_function=self._embedding_model.embed_documents,
|
81 |
persist_directory=self._persist_directory,
|
82 |
-
collection_name=self._collection_name
|
|
|
83 |
)
|
84 |
|
85 |
self._initialized = True
|
|
|
13 |
from src.embeddings.huggingface_embedding import HuggingFaceEmbedding
|
14 |
from src.utils.logger import logger
|
15 |
from config.config import settings
|
16 |
+
from src.vectorstores.chroma_settings import get_chroma_settings
|
17 |
|
18 |
|
19 |
class OptimizedVectorStore(ChromaVectorStore):
|
|
|
57 |
# Clean up existing database if dimensions don't match
|
58 |
await self._cleanup_if_needed(required_dim)
|
59 |
|
60 |
+
# Create ChromaDB client with consistent settings
|
61 |
client = chromadb.PersistentClient(
|
62 |
path=self._persist_directory,
|
63 |
+
settings=get_chroma_settings() # Use shared settings function
|
|
|
|
|
|
|
|
|
64 |
)
|
65 |
|
66 |
# Create new collection with correct dimensions
|
67 |
+
# collection = self._setup_collection(client)
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
# Initialize parent class
|
70 |
super().__init__(
|
71 |
embedding_function=self._embedding_model.embed_documents,
|
72 |
persist_directory=self._persist_directory,
|
73 |
+
collection_name=self._collection_name,
|
74 |
+
client=client # Pass the existing client
|
75 |
)
|
76 |
|
77 |
self._initialized = True
|