File size: 16,711 Bytes
6ffdd29 a0b6210 6ffdd29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import math
import os
from dataclasses import dataclass, field, is_dataclass
from pathlib import Path
from typing import List, Optional
import torch
from omegaconf import OmegaConf
from utils.data_prep import (
add_t_start_end_to_utt_obj,
get_batch_starts_ends,
get_batch_variables,
get_manifest_lines_batch,
is_entry_in_all_lines,
is_entry_in_any_lines,
)
from utils.make_ass_files import make_ass_files
from utils.make_ctm_files import make_ctm_files
from utils.make_output_manifest import write_manifest_out_line
from utils.viterbi_decoding import viterbi_decoding
from nemo.collections.asr.models.ctc_models import EncDecCTCModel
from nemo.collections.asr.models.hybrid_rnnt_ctc_models import EncDecHybridRNNTCTCModel
from nemo.collections.asr.parts.utils.streaming_utils import FrameBatchASR
from nemo.collections.asr.parts.utils.transcribe_utils import setup_model
from nemo.core.config import hydra_runner
from nemo.utils import logging
"""
Align the utterances in manifest_filepath.
Results are saved in ctm files in output_dir.
Arguments:
pretrained_name: string specifying the name of a CTC NeMo ASR model which will be automatically downloaded
from NGC and used for generating the log-probs which we will use to do alignment.
Note: NFA can only use CTC models (not Transducer models) at the moment.
model_path: string specifying the local filepath to a CTC NeMo ASR model which will be used to generate the
log-probs which we will use to do alignment.
Note: NFA can only use CTC models (not Transducer models) at the moment.
Note: if a model_path is provided, it will override the pretrained_name.
manifest_filepath: filepath to the manifest of the data you want to align,
containing 'audio_filepath' and 'text' fields.
output_dir: the folder where output CTM files and new JSON manifest will be saved.
align_using_pred_text: if True, will transcribe the audio using the specified model and then use that transcription
as the reference text for the forced alignment.
transcribe_device: None, or a string specifying the device that will be used for generating log-probs (i.e. "transcribing").
The string needs to be in a format recognized by torch.device(). If None, NFA will set it to 'cuda' if it is available
(otherwise will set it to 'cpu').
viterbi_device: None, or string specifying the device that will be used for doing Viterbi decoding.
The string needs to be in a format recognized by torch.device(). If None, NFA will set it to 'cuda' if it is available
(otherwise will set it to 'cpu').
batch_size: int specifying batch size that will be used for generating log-probs and doing Viterbi decoding.
use_local_attention: boolean flag specifying whether to try to use local attention for the ASR Model (will only
work if the ASR Model is a Conformer model). If local attention is used, we will set the local attention context
size to [64,64].
additional_segment_grouping_separator: an optional string used to separate the text into smaller segments.
If this is not specified, then the whole text will be treated as a single segment.
remove_blank_tokens_from_ctm: a boolean denoting whether to remove <blank> tokens from token-level output CTMs.
audio_filepath_parts_in_utt_id: int specifying how many of the 'parts' of the audio_filepath
we will use (starting from the final part of the audio_filepath) to determine the
utt_id that will be used in the CTM files. Note also that any spaces that are present in the audio_filepath
will be replaced with dashes, so as not to change the number of space-separated elements in the
CTM files.
e.g. if audio_filepath is "/a/b/c/d/e 1.wav" and audio_filepath_parts_in_utt_id is 1 => utt_id will be "e1"
e.g. if audio_filepath is "/a/b/c/d/e 1.wav" and audio_filepath_parts_in_utt_id is 2 => utt_id will be "d_e1"
e.g. if audio_filepath is "/a/b/c/d/e 1.wav" and audio_filepath_parts_in_utt_id is 3 => utt_id will be "c_d_e1"
use_buffered_infer: False, if set True, using streaming to do get the logits for alignment
This flag is useful when aligning large audio file.
However, currently the chunk streaming inference does not support batch inference,
which means even you set batch_size > 1, it will only infer one by one instead of doing
the whole batch inference together.
chunk_len_in_secs: float chunk length in seconds
total_buffer_in_secs: float Length of buffer (chunk + left and right padding) in seconds
chunk_batch_size: int batch size for buffered chunk inference,
which will cut one audio into segments and do inference on chunk_batch_size segments at a time
simulate_cache_aware_streaming: False, if set True, using cache aware streaming to do get the logits for alignment
save_output_file_formats: List of strings specifying what type of output files to save (default: ["ctm", "ass"])
ctm_file_config: CTMFileConfig to specify the configuration of the output CTM files
ass_file_config: ASSFileConfig to specify the configuration of the output ASS files
"""
@dataclass
class CTMFileConfig:
remove_blank_tokens: bool = False
# minimum duration (in seconds) for timestamps in the CTM.If any line in the CTM has a
# duration lower than this, it will be enlarged from the middle outwards until it
# meets the minimum_timestamp_duration, or reaches the beginning or end of the audio file.
# Note that this may cause timestamps to overlap.
minimum_timestamp_duration: float = 0
@dataclass
class ASSFileConfig:
fontsize: int = 20
vertical_alignment: str = "center"
# if resegment_text_to_fill_space is True, the ASS files will use new segments
# such that each segment will not take up more than (approximately) max_lines_per_segment
# when the ASS file is applied to a video
resegment_text_to_fill_space: bool = False
max_lines_per_segment: int = 2
text_already_spoken_rgb: List[int] = field(default_factory=lambda: [49, 46, 61]) # dark gray
text_being_spoken_rgb: List[int] = field(default_factory=lambda: [57, 171, 9]) # dark green
text_not_yet_spoken_rgb: List[int] = field(default_factory=lambda: [194, 193, 199]) # light gray
@dataclass
class AlignmentConfig:
# Required configs
pretrained_name: Optional[str] = None
model_path: Optional[str] = None
manifest_filepath: Optional[str] = None
output_dir: Optional[str] = None
# General configs
align_using_pred_text: bool = False
transcribe_device: Optional[str] = None
viterbi_device: Optional[str] = None
batch_size: int = 1
use_local_attention: bool = True
additional_segment_grouping_separator: Optional[str] = None
audio_filepath_parts_in_utt_id: int = 1
# Buffered chunked streaming configs
use_buffered_chunked_streaming: bool = False
chunk_len_in_secs: float = 1.6
total_buffer_in_secs: float = 4.0
chunk_batch_size: int = 32
# Cache aware streaming configs
simulate_cache_aware_streaming: Optional[bool] = False
# Output file configs
save_output_file_formats: List[str] = field(default_factory=lambda: ["ctm", "ass"])
ctm_file_config: CTMFileConfig = field(default_factory=CTMFileConfig)
ass_file_config: ASSFileConfig = field(default_factory=ASSFileConfig)
@hydra_runner(config_name="AlignmentConfig", schema=AlignmentConfig)
def main(cfg: AlignmentConfig):
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
if is_dataclass(cfg):
cfg = OmegaConf.structured(cfg)
# Validate config
if cfg.model_path is None and cfg.pretrained_name is None:
raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None")
if cfg.model_path is not None and cfg.pretrained_name is not None:
raise ValueError("One of cfg.model_path and cfg.pretrained_name must be None")
if cfg.manifest_filepath is None:
raise ValueError("cfg.manifest_filepath must be specified")
if cfg.output_dir is None:
raise ValueError("cfg.output_dir must be specified")
if cfg.batch_size < 1:
raise ValueError("cfg.batch_size cannot be zero or a negative number")
if cfg.additional_segment_grouping_separator == "" or cfg.additional_segment_grouping_separator == " ":
raise ValueError("cfg.additional_grouping_separator cannot be empty string or space character")
if cfg.ctm_file_config.minimum_timestamp_duration < 0:
raise ValueError("cfg.minimum_timestamp_duration cannot be a negative number")
if cfg.ass_file_config.vertical_alignment not in ["top", "center", "bottom"]:
raise ValueError("cfg.ass_file_config.vertical_alignment must be one of 'top', 'center' or 'bottom'")
for rgb_list in [
cfg.ass_file_config.text_already_spoken_rgb,
cfg.ass_file_config.text_already_spoken_rgb,
cfg.ass_file_config.text_already_spoken_rgb,
]:
if len(rgb_list) != 3:
raise ValueError(
"cfg.ass_file_config.text_already_spoken_rgb,"
" cfg.ass_file_config.text_being_spoken_rgb,"
" and cfg.ass_file_config.text_already_spoken_rgb all need to contain"
" exactly 3 elements."
)
# Validate manifest contents
if not is_entry_in_all_lines(cfg.manifest_filepath, "audio_filepath"):
raise RuntimeError(
"At least one line in cfg.manifest_filepath does not contain an 'audio_filepath' entry. "
"All lines must contain an 'audio_filepath' entry."
)
if cfg.align_using_pred_text:
if is_entry_in_any_lines(cfg.manifest_filepath, "pred_text"):
raise RuntimeError(
"Cannot specify cfg.align_using_pred_text=True when the manifest at cfg.manifest_filepath "
"contains 'pred_text' entries. This is because the audio will be transcribed and may produce "
"a different 'pred_text'. This may cause confusion."
)
else:
if not is_entry_in_all_lines(cfg.manifest_filepath, "text"):
raise RuntimeError(
"At least one line in cfg.manifest_filepath does not contain a 'text' entry. "
"NFA requires all lines to contain a 'text' entry when cfg.align_using_pred_text=False."
)
# init devices
if cfg.transcribe_device is None:
transcribe_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
transcribe_device = torch.device(cfg.transcribe_device)
logging.info(f"Device to be used for transcription step (`transcribe_device`) is {transcribe_device}")
if cfg.viterbi_device is None:
viterbi_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
viterbi_device = torch.device(cfg.viterbi_device)
logging.info(f"Device to be used for viterbi step (`viterbi_device`) is {viterbi_device}")
if transcribe_device.type == 'cuda' or viterbi_device.type == 'cuda':
logging.warning(
'One or both of transcribe_device and viterbi_device are GPUs. If you run into OOM errors '
'it may help to change both devices to be the CPU.'
)
# load model
model, _ = setup_model(cfg, transcribe_device)
model.eval()
if isinstance(model, EncDecHybridRNNTCTCModel):
model.change_decoding_strategy(decoder_type="ctc")
if cfg.use_local_attention:
logging.info(
"Flag use_local_attention is set to True => will try to use local attention for model if it allows it"
)
model.change_attention_model(self_attention_model="rel_pos_local_attn", att_context_size=[64, 64])
if not (isinstance(model, EncDecCTCModel) or isinstance(model, EncDecHybridRNNTCTCModel)):
raise NotImplementedError(
f"Model is not an instance of NeMo EncDecCTCModel or ENCDecHybridRNNTCTCModel."
" Currently only instances of these models are supported"
)
if cfg.ctm_file_config.minimum_timestamp_duration > 0:
logging.warning(
f"cfg.ctm_file_config.minimum_timestamp_duration has been set to {cfg.ctm_file_config.minimum_timestamp_duration} seconds. "
"This may cause the alignments for some tokens/words/additional segments to be overlapping."
)
buffered_chunk_params = {}
if cfg.use_buffered_chunked_streaming:
model_cfg = copy.deepcopy(model._cfg)
OmegaConf.set_struct(model_cfg.preprocessor, False)
# some changes for streaming scenario
model_cfg.preprocessor.dither = 0.0
model_cfg.preprocessor.pad_to = 0
if model_cfg.preprocessor.normalize != "per_feature":
logging.error(
"Only EncDecCTCModelBPE models trained with per_feature normalization are supported currently"
)
# Disable config overwriting
OmegaConf.set_struct(model_cfg.preprocessor, True)
feature_stride = model_cfg.preprocessor['window_stride']
model_stride_in_secs = feature_stride * cfg.model_downsample_factor
total_buffer = cfg.total_buffer_in_secs
chunk_len = float(cfg.chunk_len_in_secs)
tokens_per_chunk = math.ceil(chunk_len / model_stride_in_secs)
mid_delay = math.ceil((chunk_len + (total_buffer - chunk_len) / 2) / model_stride_in_secs)
logging.info(f"tokens_per_chunk is {tokens_per_chunk}, mid_delay is {mid_delay}")
model = FrameBatchASR(
asr_model=model,
frame_len=chunk_len,
total_buffer=cfg.total_buffer_in_secs,
batch_size=cfg.chunk_batch_size,
)
buffered_chunk_params = {
"delay": mid_delay,
"model_stride_in_secs": model_stride_in_secs,
"tokens_per_chunk": tokens_per_chunk,
}
# get start and end line IDs of batches
starts, ends = get_batch_starts_ends(cfg.manifest_filepath, cfg.batch_size)
# init output_timestep_duration = None and we will calculate and update it during the first batch
output_timestep_duration = None
# init f_manifest_out
os.makedirs(cfg.output_dir, exist_ok=True)
tgt_manifest_name = str(Path(cfg.manifest_filepath).stem) + "_with_output_file_paths.json"
tgt_manifest_filepath = str(Path(cfg.output_dir) / tgt_manifest_name)
f_manifest_out = open(tgt_manifest_filepath, 'w')
# get alignment and save in CTM batch-by-batch
for start, end in zip(starts, ends):
manifest_lines_batch = get_manifest_lines_batch(cfg.manifest_filepath, start, end)
(log_probs_batch, y_batch, T_batch, U_batch, utt_obj_batch, output_timestep_duration,) = get_batch_variables(
manifest_lines_batch,
model,
cfg.additional_segment_grouping_separator,
cfg.align_using_pred_text,
cfg.audio_filepath_parts_in_utt_id,
output_timestep_duration,
cfg.simulate_cache_aware_streaming,
cfg.use_buffered_chunked_streaming,
buffered_chunk_params,
)
alignments_batch = viterbi_decoding(log_probs_batch, y_batch, T_batch, U_batch, viterbi_device)
for utt_obj, alignment_utt in zip(utt_obj_batch, alignments_batch):
utt_obj = add_t_start_end_to_utt_obj(utt_obj, alignment_utt, output_timestep_duration)
if "ctm" in cfg.save_output_file_formats:
utt_obj = make_ctm_files(utt_obj, cfg.output_dir, cfg.ctm_file_config,)
if "ass" in cfg.save_output_file_formats:
utt_obj = make_ass_files(utt_obj, cfg.output_dir, cfg.ass_file_config)
write_manifest_out_line(
f_manifest_out, utt_obj,
)
f_manifest_out.close()
return None
if __name__ == "__main__":
main()
|