import gradio as gr import librosa import soundfile import tempfile import os import uuid import json from nemo.collections.asr.models import ASRModel from nemo.utils import logging from align import main, AlignmentConfig, ASSFileConfig SAMPLE_RATE = 16000 logging.setLevel(logging.INFO) def get_audio_data_and_duration(file): data, sr = librosa.load(file) if sr != SAMPLE_RATE: data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE) # monochannel data = librosa.to_mono(data) duration = librosa.get_duration(y=data, sr=SAMPLE_RATE) return data, duration def get_char_tokens(text, model): tokens = [] for character in text: if character in model.decoder.vocabulary: tokens.append(model.decoder.vocabulary.index(character)) else: tokens.append(len(model.decoder.vocabulary)) # return unk token (same as blank token) return tokens def get_S_prime_and_T(text, model_name, model, audio_duration): # estimate T if "citrinet" in model_name or "_fastconformer_" in model_name: output_timestep_duration = 0.08 elif "_conformer_" in model_name: output_timestep_duration = 0.04 elif "quartznet" in model_name: output_timestep_duration = 0.02 else: raise RuntimeError("unexpected model name") T = int(audio_duration / output_timestep_duration) + 1 # calculate S_prime = num tokens + num repetitions if hasattr(model, 'tokenizer'): all_tokens = model.tokenizer.text_to_ids(text) elif hasattr(model.decoder, "vocabulary"): # i.e. tokenization is simply character-based all_tokens = get_char_tokens(text, model) else: raise RuntimeError("cannot obtain tokens from this model") n_token_repetitions = 0 for i_tok in range(1, len(all_tokens)): if all_tokens[i_tok] == all_tokens[i_tok - 1]: n_token_repetitions += 1 S_prime = len(all_tokens) + n_token_repetitions return S_prime, T def hex_to_rgb_list(hex_string): hex_string = hex_string.lstrip("#") r = int(hex_string[:2], 16) g = int(hex_string[2:4], 16) b = int(hex_string[4:], 16) return [r, g, b] def delete_mp4s_except_given_filepath(filepath): files_in_dir = os.listdir() mp4_files_in_dir = [x for x in files_in_dir if x.endswith(".mp4")] for mp4_file in mp4_files_in_dir: if mp4_file != filepath: os.remove(mp4_file) def align(Microphone, File_Upload, text, col1, col2, col3, split_on_newline, progress=gr.Progress()): # Create utt_id, specify output_video_filepath and delete any MP4s # that are not that filepath. These stray MP4s can be created # if a user refreshes or exits the page while this 'align' function is executing. # This deletion will not delete any other users' video as long as this 'align' function # is run one at a time. utt_id = uuid.uuid4() output_video_filepath = f"{utt_id}.mp4" delete_mp4s_except_given_filepath(output_video_filepath) output_info = "" ass_text="" progress(0, desc="Validating input") # decide which of Mic / File_Upload is used as input & do error handling if (Microphone is not None) and (File_Upload is not None): raise gr.Error("Please use either the microphone or file upload input - not both") elif (Microphone is None) and (File_Upload is None): raise gr.Error("You have to either use the microphone or upload an audio file") elif Microphone is not None: file = Microphone else: file = File_Upload # check audio is not too long audio_data, duration = get_audio_data_and_duration(file) if duration > 4 * 60: raise gr.Error( f"Detected that uploaded audio has duration {duration/60:.1f} mins - please only upload audio of less than 4 mins duration" ) # loading model progress(0.1, desc="Loading speech recognition model") model_name = "ayymen/stt_zgh_fastconformer_ctc_small" model = ASRModel.from_pretrained(model_name) if text: # check input text is not too long compared to audio S_prime, T = get_S_prime_and_T(text, model_name, model, duration) if S_prime > T: raise gr.Error( f"The number of tokens in the input text is too long compared to the duration of the audio." f" This model can handle {T} tokens + token repetitions at most. You have provided {S_prime} tokens + token repetitions. " f" (Adjacent tokens that are not in the model's vocabulary are also counted as a token repetition.)" ) with tempfile.TemporaryDirectory() as tmpdir: audio_path = os.path.join(tmpdir, f'{utt_id}.wav') soundfile.write(audio_path, audio_data, SAMPLE_RATE) # getting the text if it hasn't been provided if not text: progress(0.2, desc="Transcribing audio") text = model.transcribe([audio_path])[0] if 'hybrid' in model_name: text = text[0] if text == "": raise gr.Error( "ERROR: the ASR model did not detect any speech in the input audio. Please upload audio with speech." ) output_info += ( "You did not enter any input text, so the ASR model's transcription will be used:\n" "--------------------------\n" f"{text}\n" "--------------------------\n" f"You could try pasting the transcription into the text input box, correcting any" " transcription errors, and clicking 'Submit' again." ) # split text on new lines if requested if split_on_newline: text = "|".join(list(filter(None, text.split("\n")))) data = { "audio_filepath": audio_path, "text": text, } manifest_path = os.path.join(tmpdir, f"{utt_id}_manifest.json") with open(manifest_path, 'w') as fout: fout.write(f"{json.dumps(data)}\n") # run alignment if "|" in text: resegment_text_to_fill_space = False else: resegment_text_to_fill_space = True alignment_config = AlignmentConfig( pretrained_name=model_name, manifest_filepath=manifest_path, output_dir=f"{tmpdir}/nfa_output/", audio_filepath_parts_in_utt_id=1, batch_size=1, use_local_attention=True, additional_segment_grouping_separator="|", # transcribe_device='cpu', # viterbi_device='cpu', save_output_file_formats=["ass", "ctm"], ass_file_config=ASSFileConfig( fontsize=45, resegment_text_to_fill_space=resegment_text_to_fill_space, max_lines_per_segment=4, text_already_spoken_rgb=hex_to_rgb_list(col1), text_being_spoken_rgb=hex_to_rgb_list(col2), text_not_yet_spoken_rgb=hex_to_rgb_list(col3), ), ) progress(0.5, desc="Aligning audio") main(alignment_config) progress(0.95, desc="Saving generated alignments") # make video file from the word-level ASS file ass_file_for_video = f"{tmpdir}/nfa_output/ass/words/{utt_id}.ass" with open(ass_file_for_video, "r") as ass_file: ass_text = ass_file.read() ffmpeg_command = ( f"ffmpeg -y -i {audio_path} " "-f lavfi -i color=c=white:s=1280x720:r=50 " "-crf 1 -shortest -vcodec libx264 -pix_fmt yuv420p " f"-vf 'ass={ass_file_for_video}' " f"{output_video_filepath}" ) os.system(ffmpeg_command) # save ASS file ass_path = "word_level.ass" with open(ass_path, "w", encoding="utf-8") as f: f.write(ass_text) # save word-level CTM file with open(f"{tmpdir}/nfa_output/ctm/words/{utt_id}.ctm", "r") as word_ctm_file: word_ctm_text = word_ctm_file.read() word_ctm_path = "word_level.ctm" with open(word_ctm_path, "w", encoding="utf-8") as f: f.write(word_ctm_text) # save segment-level CTM file with open(f"{tmpdir}/nfa_output/ctm/segments/{utt_id}.ctm", "r") as segment_ctm_file: segment_ctm_text = segment_ctm_file.read() segment_ctm_path = "segment_level.ctm" with open(segment_ctm_path, "w", encoding="utf-8") as f: f.write(segment_ctm_text) return output_video_filepath, gr.update(value=output_info, visible=True if output_info else False), output_video_filepath, gr.update(value=ass_path, visible=True), gr.update(value=word_ctm_path, visible=True), gr.update(value=segment_ctm_path, visible=True) def delete_non_tmp_video(video_path): if video_path: if os.path.exists(video_path): os.remove(video_path) return None with gr.Blocks(title="NeMo Forced Aligner", theme="huggingface") as demo: non_tmp_output_video_filepath = gr.State([]) with gr.Row(): with gr.Column(): gr.Markdown("# NeMo Forced Aligner") gr.Markdown( "Demo for [NeMo Forced Aligner](https://github.com/NVIDIA/NeMo/tree/main/tools/nemo_forced_aligner) (NFA). " "Upload audio and (optionally) the text spoken in the audio to generate a video where each part of the text will be highlighted as it is spoken. ", ) with gr.Row(): with gr.Column(scale=1): gr.Markdown("## Input") mic_in = gr.Audio(sources=["microphone"], type='filepath', label="Microphone input (max 4 mins)") audio_file_in = gr.Audio(sources=["upload"], type='filepath', label="File upload (max 4 mins)") ref_text = gr.Textbox( label="[Optional] The reference text. Use '|' separators to specify which text will appear together. " "Leave this field blank to use an ASR model's transcription as the reference text instead." ) split_on_newline = gr.Checkbox( True, label="Separate text on new lines", ) gr.Markdown("[Optional] For fun - adjust the colors of the text in the output video") with gr.Row(): col1 = gr.ColorPicker(label="text already spoken", value="#fcba03") col2 = gr.ColorPicker(label="text being spoken", value="#bf45bf") col3 = gr.ColorPicker(label="text to be spoken", value="#3e1af0") submit_button = gr.Button("Submit") with gr.Column(scale=1): gr.Markdown("## Output") video_out = gr.Video(label="Output Video") text_out = gr.Textbox(label="Output Info", visible=False) ass_file = gr.File(label="ASS File", visible=False) word_ctm_file = gr.File(label="Word-level CTM File", visible=False) segment_ctm_file = gr.File(label="Segment-level CTM File", visible=False) with gr.Row(): gr.HTML( "

" "Tutorial: \"How to use NFA?\" ๐Ÿš€ | " "Blog post: \"How does forced alignment work?\" ๐Ÿ“š | " "NFA Github page ๐Ÿ‘ฉโ€๐Ÿ’ป" "

" ) submit_button.click( fn=align, inputs=[mic_in, audio_file_in, ref_text, col1, col2, col3, split_on_newline], outputs=[video_out, text_out, non_tmp_output_video_filepath, ass_file, word_ctm_file, segment_ctm_file], ).then( fn=delete_non_tmp_video, inputs=[non_tmp_output_video_filepath], outputs=None, ) example_2 = """โตœโดฐโดฝโตŸโตŸโต“โตŽโตœ โต โตœโต™โดฐโดทโต“โดผโตœ. โต™ โต‰โต™โตŽ โต โต•โดฑโดฑโต‰ โดฐโตŽโดฐโตโตโดฐโตข โดฐโตŽโต™โตŽโต“โตโตโต“. โดฐโตŽโต“โตข โต‰ โต•โดฑโดฑโต‰ โตโตโต‰ โตŽโต“ โตœโดณโดฐ โตœโต“โตโต–โต‰โตœ โตœโต‰โตโตโต™, โต•โดฑโดฑโต‰ โต โต‰โต–โตฅโตกโดฐโต•โต, โดฝโต”โดฐ โดณโดฐโต. โดฐโตŽโดฐโตโตโดฐโตข โดฐโตŽโต™โตŽโต“โตโตโต“, โต– โตœโตŽโตฃโตกโดฐโต”โต“โตœ โต“โตโดฐ โต– โตœโตŽโดณโดณโดฐโต”โต“โตœ. โดฐโดณโตโตโต‰โดท โต โตกโดฐโต™โต™ โต โต“โดผโต”โดฐ, โดฐโต™โต™ โต โต“โต™โต™โตƒโต™โต“, โดฝโต”โดฐโต‰โดณโดฐโตœ โตขโดฐโต โดท โตŽโดฐโดท โต‰โต™โดฝโต”. โต€โดฐ โตโต โดฝโตขโตขโต‰ โดฝโดฐ โต™ โตโต™โต™โต“โตŽโดท, โดท โดฝโตขโตขโต‰ โดฝโดฐ โดฐโดท โตโตŽโตŽโตœโต”. โต™โตŽโต“โต โดฐโต–, โตœโตŽโตโตœ โดฐโต–, โดฐโต–โดฐโต”โดฐโต™ โตขโต“โต–โดทโต. โดฐโต–โดฐโต”โดฐโต™ โต โต–โตกโต‰โตโตโต‰ โตœโต™โตโตโต“โดผโดฐโตœ, โต“โต” โดท โดฐโตขโตœ โตœโต‰โตขโต“โต”โต‰, โต“โตโดฐ โต‰โตŽโต“โดนโดนโดฐโต•.""" examples = gr.Examples( examples=[ ["common_voice_zgh_37837257.mp3", "โตŽโต โต‰โตขโต‰ โตŽโดฐโดท โดท โตœโดปโตœโตœโตŽโต“โตโดท โดฐโดท โดฐโดฝ โตŽโตโต– โตŽโดฐโดท โตœโดณโต‰โดท"], ["Voice1410.wav", example_2] ], inputs=[audio_file_in, ref_text] ) demo.queue() demo.launch()