Tamerstito commited on
Commit
1d88b62
·
verified ·
1 Parent(s): 5b45d6b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -19
app.py CHANGED
@@ -18,7 +18,6 @@ def translate_audio(filepath):
18
  gr.Warning("No audio found, please retry.")
19
  return ""
20
 
21
- # Load audio using pydub for chunking
22
  audio = AudioSegment.from_file(filepath)
23
  chunk_length_ms = 30 * 1000 # 30 seconds
24
  chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
@@ -29,11 +28,9 @@ def translate_audio(filepath):
29
  chunk_path = f"chunk_{i}.wav"
30
  chunk.export(chunk_path, format="wav")
31
 
32
- # Load chunk for model input
33
  waveform, sample_rate = torchaudio.load(chunk_path)
34
  inputs = processor(waveform[0], sampling_rate=sample_rate, return_tensors="pt")
35
 
36
- # Generate translated output
37
  with torch.no_grad():
38
  generated_ids = model.generate(
39
  inputs["input_features"],
@@ -50,27 +47,26 @@ def translate_audio(filepath):
50
  # Gradio UI components
51
  mic_transcribe = gr.Interface(
52
  fn=translate_audio,
53
- inputs=gr.Audio(sources="microphone",
54
- type="filepath"),
55
- outputs=gr.Textbox(label="Translation (English to Spanish)",
56
- lines=3),
57
- allow_flagging="never")
58
 
59
  file_transcribe = gr.Interface(
60
  fn=translate_audio,
61
- inputs=gr.Audio(sources="upload",
62
- type="filepath"),
63
- outputs=gr.Textbox(label="Translation (English to Spanish)",
64
- lines=3),
65
- allow_flagging="never",)
 
 
66
 
67
  with demo:
68
  gr.TabbedInterface(
69
- [mic_transcribe,
70
- file_transcribe],
71
- ["Transcribe Microphone",
72
- "Transcribe Audio File"],
73
  )
 
74
  server_port = int(os.environ.get("PORT", 7860))
75
- demo.launch(share=True,
76
- server_port=server_port)
 
18
  gr.Warning("No audio found, please retry.")
19
  return ""
20
 
 
21
  audio = AudioSegment.from_file(filepath)
22
  chunk_length_ms = 30 * 1000 # 30 seconds
23
  chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
 
28
  chunk_path = f"chunk_{i}.wav"
29
  chunk.export(chunk_path, format="wav")
30
 
 
31
  waveform, sample_rate = torchaudio.load(chunk_path)
32
  inputs = processor(waveform[0], sampling_rate=sample_rate, return_tensors="pt")
33
 
 
34
  with torch.no_grad():
35
  generated_ids = model.generate(
36
  inputs["input_features"],
 
47
  # Gradio UI components
48
  mic_transcribe = gr.Interface(
49
  fn=translate_audio,
50
+ inputs=gr.Audio(sources="microphone", type="filepath"),
51
+ outputs=gr.Textbox(label="Translation (English to Spanish)", lines=3),
52
+ allow_flagging="never"
53
+ )
 
54
 
55
  file_transcribe = gr.Interface(
56
  fn=translate_audio,
57
+ inputs=gr.Audio(sources="upload", type="filepath"),
58
+ outputs=gr.Textbox(label="Translation (English to Spanish)", lines=3),
59
+ allow_flagging="never"
60
+ )
61
+
62
+ # Initialize Blocks properly
63
+ demo = gr.Blocks()
64
 
65
  with demo:
66
  gr.TabbedInterface(
67
+ [mic_transcribe, file_transcribe],
68
+ ["Transcribe Microphone", "Transcribe Audio File"]
 
 
69
  )
70
+
71
  server_port = int(os.environ.get("PORT", 7860))
72
+ demo.launch(share=True, server_port=server_port)