Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +7 -24
- requirements.txt +2 -2
app.py
CHANGED
@@ -20,60 +20,44 @@ def translate_audio(filepath):
|
|
20 |
if filepath is None or not os.path.exists(filepath):
|
21 |
return "No audio file received or file does not exist."
|
22 |
|
23 |
-
#
|
24 |
if model is None:
|
25 |
print("Loading Whisper model...")
|
26 |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
27 |
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
28 |
forced_decoder_ids = processor.get_decoder_prompt_ids(
|
29 |
-
task="translate", language="
|
30 |
)
|
31 |
-
print("Model
|
32 |
|
33 |
audio = AudioSegment.from_file(filepath).set_channels(1)
|
34 |
-
print("Audio loaded. Duration (ms):", len(audio))
|
35 |
-
|
36 |
chunk_length_ms = 30 * 1000
|
37 |
chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
|
38 |
-
print(f"Audio split into {len(chunks)} chunks.")
|
39 |
|
40 |
full_translation = ""
|
41 |
|
42 |
for i, chunk in enumerate(chunks):
|
43 |
chunk_path = f"chunk_{i}.wav"
|
44 |
chunk.export(chunk_path, format="wav")
|
45 |
-
print(f"Exported chunk {i} to {chunk_path}")
|
46 |
-
|
47 |
waveform, sample_rate = torchaudio.load(chunk_path)
|
48 |
|
49 |
-
# Resample if necessary
|
50 |
if sample_rate != 16000:
|
51 |
-
|
52 |
-
resampler = T.Resample(orig_freq=sample_rate, new_freq=16000)
|
53 |
-
waveform = resampler(waveform)
|
54 |
|
55 |
-
# Convert to mono
|
56 |
waveform = waveform.mean(dim=0)
|
57 |
-
|
58 |
-
inputs = processor(
|
59 |
-
waveform,
|
60 |
-
sampling_rate=16000,
|
61 |
-
return_tensors="pt"
|
62 |
-
)
|
63 |
|
64 |
with torch.no_grad():
|
65 |
generated_ids = model.generate(
|
66 |
inputs["input_features"],
|
67 |
-
forced_decoder_ids=forced_decoder_ids
|
|
|
68 |
)
|
69 |
|
70 |
translation = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
71 |
-
print(f"Chunk {i} translation:", translation)
|
72 |
-
|
73 |
full_translation += translation + " "
|
74 |
os.remove(chunk_path)
|
75 |
|
76 |
-
print("Full translation done.")
|
77 |
return full_translation.strip()
|
78 |
|
79 |
except Exception as e:
|
@@ -81,7 +65,6 @@ def translate_audio(filepath):
|
|
81 |
traceback.print_exc()
|
82 |
return f"An error occurred: {str(e)}"
|
83 |
|
84 |
-
# Gradio UI
|
85 |
mic_transcribe = gr.Interface(
|
86 |
fn=translate_audio,
|
87 |
inputs=gr.Audio(sources="microphone", type="filepath"),
|
|
|
20 |
if filepath is None or not os.path.exists(filepath):
|
21 |
return "No audio file received or file does not exist."
|
22 |
|
23 |
+
# Load Whisper
|
24 |
if model is None:
|
25 |
print("Loading Whisper model...")
|
26 |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
27 |
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
28 |
forced_decoder_ids = processor.get_decoder_prompt_ids(
|
29 |
+
task="translate", language="es"
|
30 |
)
|
31 |
+
print("Model and processor ready.")
|
32 |
|
33 |
audio = AudioSegment.from_file(filepath).set_channels(1)
|
|
|
|
|
34 |
chunk_length_ms = 30 * 1000
|
35 |
chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
|
|
|
36 |
|
37 |
full_translation = ""
|
38 |
|
39 |
for i, chunk in enumerate(chunks):
|
40 |
chunk_path = f"chunk_{i}.wav"
|
41 |
chunk.export(chunk_path, format="wav")
|
|
|
|
|
42 |
waveform, sample_rate = torchaudio.load(chunk_path)
|
43 |
|
|
|
44 |
if sample_rate != 16000:
|
45 |
+
waveform = T.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)
|
|
|
|
|
46 |
|
|
|
47 |
waveform = waveform.mean(dim=0)
|
48 |
+
inputs = processor(waveform, sampling_rate=16000, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
with torch.no_grad():
|
51 |
generated_ids = model.generate(
|
52 |
inputs["input_features"],
|
53 |
+
forced_decoder_ids=forced_decoder_ids,
|
54 |
+
suppress_tokens=[]
|
55 |
)
|
56 |
|
57 |
translation = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
|
|
|
58 |
full_translation += translation + " "
|
59 |
os.remove(chunk_path)
|
60 |
|
|
|
61 |
return full_translation.strip()
|
62 |
|
63 |
except Exception as e:
|
|
|
65 |
traceback.print_exc()
|
66 |
return f"An error occurred: {str(e)}"
|
67 |
|
|
|
68 |
mic_transcribe = gr.Interface(
|
69 |
fn=translate_audio,
|
70 |
inputs=gr.Audio(sources="microphone", type="filepath"),
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cpu
|
2 |
-
transformers==4.36.2
|
3 |
torch
|
4 |
torchaudio
|
5 |
-
|
6 |
gradio
|
|
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cpu
|
|
|
2 |
torch
|
3 |
torchaudio
|
4 |
+
transformers==4.36.2
|
5 |
gradio
|
6 |
+
pydub
|