Spaces:
Runtime error
Runtime error
File size: 17,923 Bytes
b282b19 aea4ef2 b282b19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import streamlit as st #Web App
from PIL import Image, ImageOps #Image Processing
import time
from unittest import result
from pythainlp.util import isthai
import numpy as np
import easyocr as ocr #OCR
import editdistance
from fastbook import *
from fastai.vision import *
from glob import glob
from pathlib import Path
from sklearn.metrics import precision_recall_fscore_support, accuracy_score, roc_auc_score
st.sidebar.image("./stem_logo.png")
st.sidebar.header("ATK-OCR classification (AOC) Webapp.")
activities = ["Detection", "About"]
choice = st.sidebar.selectbox("Select option..",activities)
#set default size as 1280 x 1280
def img_resize(input_path,img_size): # padding
desired_size = img_size
im = Image.open(input_path)
im = ImageOps.exif_transpose(im) # fix image rotating
width, height = im.size # get img_input size
if (width == 1280) and (height == 1280):
new_im = im
else:
#im = im.convert('L') #Convert to gray
old_size = im.size # old_size[0] is in (width, height) format
ratio = float(desired_size)/max(old_size)
new_size = tuple([int(x*ratio) for x in old_size])
im = im.resize(new_size, Image.ANTIALIAS)
new_im = Image.new("RGB", (desired_size, desired_size))
new_im.paste(im, ((desired_size-new_size[0])//2,
(desired_size-new_size[1])//2))
return new_im
checkpoint_path = "./ATK Efficientb_7 FastAI(96%).pkl"
learn_inf = load_learner(checkpoint_path)
model = learn_inf.model.eval()
def get_detection(img_path):
bytes_data = img_path.getvalue() # change fileuploader type to bytes (st.file_uploader)
pred = learn_inf.predict(bytes_data)
detect_val = ""
if pred[0] == "1_Positive":
detect_val = "Positive"
st.error("Result : {} with {}% confidence".format(detect_val, round(float(pred[2][1]*100),2)))
if pred[0] == "0_Negative":
detect_val = "Negative"
st.success("Result : {} with {}% confidence".format(detect_val, round(float(pred[2][0]*100),2)))
@st.cache
def load_model():
reader = ocr.Reader(['en'],model_storage_directory='.')
return reader
reader = load_model() #load model
def Get_Idcard_detail(file_path):
raw_data = []
id_num = {"id_num" : "None"}
name = file_path
img = Image.open(name)
img = ImageOps.exif_transpose(img) # fix image rotating
width, height = img.size # get img_input size
if (width == 1280) and (height == 1280):
result = reader.readtext(np.array(img))
else:
#im = im.convert('L') #Convert to gray
old_size = img.size # old_size[0] is in (width, height) format
ratio = float(1280)/max(old_size)
new_size = tuple([int(x*ratio) for x in old_size])
img = img.resize(new_size, Image.ANTIALIAS)
new_im = Image.new("RGB", (1280, 1280))
new_im.paste(img, ((1280-new_size[0])//2,
(1280-new_size[1])//2))
result = reader.readtext(np.array(new_im))
result_text = [] #empty list for results
for text in result:
result_text.append(text[1])
raw_data = result_text
def get_english(raw_list): # Cut only english var
eng_name = []
thai_name = []
for name in raw_list:
if isthai(name) == True:
thai_name.append(name)
else:
eng_name.append(name)
return eng_name
raw_data = get_english(raw_data)
def Clear_syntax(raw_list):
Clean_syntax = ["","#","{","}","=","/","@","#","$","—","|","%","-","(",")","¥", "[", "]", "‘",':',';']
for k in range(len(Clean_syntax)):
while (Clean_syntax[k] in raw_list): # remove single symbol
raw_list.remove(Clean_syntax[k])
for l in range(len(raw_list)):
raw_list[l] = raw_list[l].replace("!","l") #split ! --> l (Error OCR Check)
raw_list[l] = raw_list[l].replace(",",".") #split ! --> l (Error OCR Check)
raw_list[l] = raw_list[l].replace(" ","") #split " " out from str
raw_list[l] = raw_list[l].lower() #Set all string to lowercase
for m in range(len(raw_list)): #Clear symbol in str "Hi/'" --> "Hi"
for n in range(len(Clean_syntax)):
raw_list[m] = raw_list[m].replace(Clean_syntax[n],"")
return raw_list
raw_data = Clear_syntax(raw_data)
def get_idnum(raw_list):
id_num = {"id_num" : "None"}
# 1. normal check
for i in range(len(raw_list)): # check if len(list) = 1, 4, 5, 2, 1 (13 digit idcard) and all is int
try:
if ((len(raw_list[i]) == 1) and (len(raw_list[i+1]) == 4) and (len(raw_list[i+2]) == 5) and (len(raw_list[i+3]) == 2) and (len(raw_list[i+4]) == 1)) and ((raw_list[i] + raw_list[i+1] + raw_list[i+2] + raw_list[i+3] + raw_list[i+4]).isnumeric()):
id_num["id_num"] = (raw_list[i] + raw_list[i+1] + raw_list[i+2] + raw_list[i+3] + raw_list[i+4])
break
except:
pass
# 2. Hardcore Check
if id_num["id_num"] == "None":
id_count = 0
index_first = 0
index_end = 0
for i in range(len(raw_list)):
if id_count == 13:
index_end = i-1 #ลบ 1 index เพราะ ครบ 13 รอบก่อนหน้านี้
#print(f"index_first == {index_first} index_end == {index_end}")
#print(f"id = {raw_list[index_first:index_end+1]}")
id_num["id_num"] = ''.join(raw_list[index_first:index_end+1])
break
else:
if raw_list[i].isnumeric() == True and index_first == 0:
id_count += len(raw_list[i])
index_first = i
elif raw_list[i].isnumeric() == True and index_first != 0:
id_count += len(raw_list[i])
elif raw_list[i].isnumeric() == False:
id_count = 0
index_first = 0
return id_num
id_num = (get_idnum(raw_data))
#Complete list name check
def list_name_check(raw_list):
sum_list = raw_list
name_key = ['name', 'lastname']
#1. name_key check
if ("name" in sum_list) and ("lastname" in sum_list): # if name and lastname in list pass it!
pass
else:
for i in range(len(name_key)):
for j in range(len(sum_list)):
if (editdistance.eval(name_key[i], sum_list[j]) <= 2 ):
sum_list[j] = name_key[i]
gender_key = ["mr.", "mrs.", 'master', 'miss']
#2 gender_key check
count = 0 # check for break
for i in range(len(gender_key)):
for j in range(len(sum_list)):
if (count == 0):
try:
if (sum_list[i] == "name") or (sum_list[i] == "lastname"): # skip "name" and "lastname"
pass
else:
# mr, mrs sensitive case double check with len(gender_key) == len(keyword)
if (gender_key[i] == "mr." or gender_key[i] == "mrs.") and (editdistance.eval(gender_key[i], sum_list[j]) <= 3 and (len(gender_key[i]) == len(sum_list[j]))):
sum_list[j] = gender_key[i]
count+=1
#print(1)
elif (gender_key[i] == "master" or gender_key[i] == "miss") and (editdistance.eval(gender_key[i], sum_list[j]) <= 3 ) and (len(gender_key[i]) == len(sum_list[j])):
sum_list[j] = gender_key[i]
count+=1
#print(1)
except:
if (gender_key[i] == "mr." or gender_key[i] == "mrs.") and (editdistance.eval(gender_key[i], sum_list[j]) <= 2 and (len(gender_key[i]) == len(sum_list[j]))):
sum_list[j] = gender_key[i]
count+=1
#print(1)
elif (gender_key[i] == "master" or gender_key[i] == "miss") and (editdistance.eval(gender_key[i], sum_list[j]) <= 3 ) and (len(gender_key[i]) == len(sum_list[j])):
sum_list[j] = gender_key[i]
count+=1
#print(1)
else:
break
return sum_list
raw_data = list_name_check(raw_data)
#get_eng_name
def get_engname(raw_list):
get_data = raw_list
engname_list = []
name_pos = []
lastname_pos = []
mr_pos = []
mrs_pos = []
# check keyword by name, lastname, master, mr, miss, mrs
for j in range(len(get_data)): #get "name" , "lastname" index
if "name" == get_data[j]:
name_pos.append(j)
elif "lastname" == get_data[j]:
lastname_pos.append(j)
elif ("mr." == get_data[j]) or ("master" == get_data[j]):
mr_pos.append(j)
elif ("miss" == get_data[j]) or ("mrs." == get_data[j]):
mrs_pos.append(j)
if len(name_pos) != 0: #get_engname ex --> ['name', 'master', 'tanaanan', 'lastname', 'chalermpan']
engname_list = get_data[name_pos[0]:name_pos[0]+6] # select first index กรณีมี "name" มากกว่า 1 ตัว
elif len(lastname_pos) != 0:
engname_list = get_data[lastname_pos[0]-3:lastname_pos[0]+3]
elif len(mr_pos) != 0:
engname_list = get_data[mr_pos[0]-1:mr_pos[0]+5]
elif len(mrs_pos) != 0:
engname_list = get_data[mrs_pos[0]-1:mrs_pos[0]+5]
else:
print("Can't find eng name!!")
return engname_list
raw_data = get_engname(raw_data)
def split_genkey(raw_list): # remove stringname + gender_key ex. "missjate" -> "jate"
data = raw_list
key = ['mrs.','mr.','master','miss']
name = "" #gen_key name
name_pos = 0
gen_index = 0
gen_type = "" #male / female
# check keyword
for key_val in key:
for each_text in data:
if (each_text[:len(key_val)] == key_val) or (editdistance.eval(each_text[:len(key_val)],key_val) <= 1 and (len(each_text[:len(key_val)]) == len(key_val))):
#each_text = each_text[len(key):]
if (each_text == "name") or (each_text == "lastname"):
pass
else:
name = (each_text[:len(key_val)])
name_pos = data.index(each_text) # get_index
gen_index = len(key_val)
break
if (name_pos != 0):
data[name_pos] = data[name_pos][gen_index:] # split gender_key on list
for empty_str in range(data.count('')): # clear "empty string"
data.remove('')
return data
raw_data = split_genkey(raw_data)
def clean_name_data(raw_list): # delete all single string and int string
for k in range(len(raw_list)):
try:
while ((len(raw_list[k]) <= 2) or (raw_list[k].isnumeric() == True)): # remove single symbol
raw_list.remove(raw_list[k])
except IndexError:
pass
return raw_list
raw_data = clean_name_data(raw_data)
def name_sum(raw_list):
info = {"name" : "None",
"lastname" : "None"}
key = ['mr.','mrs.', 'master', 'miss', 'mrs','mr']
name_pos = 0
lastname_pos = 0
for key_val in key: # remove gender_key in string
if key_val in raw_list:
raw_list.remove(key_val)
try:
for i in range(len(raw_list)):
if raw_list[i] == "name":
info["name"] = raw_list[i+1]
name_pos = i+1
elif raw_list[i] == "lastname":
info["lastname"] = raw_list[i+1]
lastname_pos = i+1
except:
pass
# กรณี หาอย่างใดอย่าหนึ่งเจอให้ลองข้ามไปดู 1 index name, "name_val", lastname , "lastname_val"
if (info["name"] != "None") and (info["lastname"] == "None"):
try:
info["lastname"] = raw_list[name_pos+2]
except:
pass
elif (info["lastname"] != "None") and (info["name"] == "None"):
try:
info["name"] = raw_list[lastname_pos-2]
except:
pass
# remove . on "mr." and "mrs."
info["name"] = info["name"].replace(".","")
info["lastname"] = info["lastname"].replace(".","")
return info
st.subheader("Process Completed!.....")
st.write(id_num)
st.write(name_sum(raw_data))
if choice == "Detection":
st.title("ATK-OCR classification (AOC) Webapp.")
#subtitle
st.subheader(" Antigen test kit + Identification Card detector.")
pages_name = ['ATK + Idcard Detect', 'ATK Detect', 'Idcard Detect']
page = st.radio('Select option mode :', pages_name)
#image uploader
image = st.file_uploader(label = "upload ATK + Idcard img here.. OwO",type=['png','jpg','jpeg'])
if image is not None:
new_img = img_resize(image, 1280)
if page == "ATK + Idcard Detect":
st.image(new_img)
with st.spinner("🤖 ATK + Idcard Working... "):
t1 = time.perf_counter()
Get_Idcard_detail(image)
get_detection(image)
t2 = time.perf_counter()
st.write('time taken to run: {:.2f} sec'.format(t2-t1))
elif page == "ATK Detect":
st.image(new_img)
with st.spinner("🤖 ATK Working... "):
t1 = time.perf_counter()
get_detection(image)
t2 = time.perf_counter()
st.write('time taken to run: {:.2f} sec'.format(t2-t1))
elif page == "Idcard Detect":
st.image(new_img)
with st.spinner("🤖 Idcard Working... "):
t1 = time.perf_counter()
Get_Idcard_detail(image)
t2 = time.perf_counter()
st.write('time taken to run: {:.2f} sec'.format(t2-t1))
else:
st.write("## Waiting for image..")
st.image('atk_idcard.jpeg')
elif choice =='About' :
st.header("About...")
st.subheader("AOC คืออะไร ?")
st.write("- เป็นระบบที่สามารถคัดกรองผลตรวจเชื้อของ COVID-19 ได้ผ่าน ที่ตรวจ ATK (Antigen Test Kit) ควบคู่กับบัตรประชาชน จากรูปภาพได้โดยอัตโนมัติ")
st.subheader("AOC ทำอะไรได้บ้าง ?")
st.write("- ตรวจจับผลตรวจ ATK (Obj detection) [debugging in progress]")
st.write("- ตรวจจับชื่อ-นามสกุล (OCR)")
st.write("- ตรวจจับเลขบัตรประชาชน (OCR)")
st.subheader("AOC ดีกว่ายังไง ?")
st.write("จากผลที่ได้จากการเปรียบเทียบกันระหว่าง model (AOC) กับ คน (Baseline) จำนวน 30 ภาพ / คน ได้ผลดังนี้")
st.image("./acc_table.png")
st.write("จากผลที่ได้สรุปได้ว่า ส่วนที่ผ่าน Baseline และมีประสิทธิภาพดีกว่าคัดกรองด้วยคนคือ ผลตรวจ ATK ได้ผลที่ 100 %, เลขบัตรประชน ได้ผลที่ 100 % และ ความเร็วในการคัดกรอง ได้ผลที่ 4.84 วินาที ซึ่งมีความเร็วมากกว่า 81% เมื่อเทียบกับคัดกรองด้วยคน ถือว่ามีประสิทธิภาพที่สูงมากในการคัดกรอง และ มีประสิทธิภาพมากกว่าการคัดแยกด้วยมนุษย์")
st.write("** ความเร็วที่โมเดลทำได้อาจไม่ตรงตามที่ deploy บนเว็บ เนื่องจากในเว็บ ไม่มี GPU ในการประมวลผลอาจทำให้โมเดลใช้เวลาในการประมวลที่นานกว่าตอนใช้ GPU")
st.subheader("คำแนะนำในการใช้งาน")
st.write("- ในการใช้งานให้ถ่ายรูปภาพบัตรประชาชนในแนวตั้งเท่านั้น เนื่องจากถ้าเป็นแนวอื่นอาจทำให้การตรวจจับคลาดเคลื่อนเอาได้")#3
st.write("- ภาพไม่ควรมีแสงที่สว่างมากเกืนไป และ มืดเกินไป มิฉะนั้นอาจทำให้การตรวจจับคลาดเคลื่อนเอาได้")#4
st.write("- ภาพไม่ควรที่จะอยู่ไกลเกินไป และ ควรมีความชัด มิฉะนั้นอาจทำให้การตรวจจับคลาดเคลื่อน หรือ ไม่สามารถตรวจจับได้")#5
st.subheader("รายละเอียดเพิ่มเติม")
st.write('[Medium blog](https://medium.com/@mjsalyjoh/atk-ocr-classification-aoc-%E0%B8%A3%E0%B8%B0%E0%B8%9A%E0%B8%9A%E0%B8%84%E0%B8%B1%E0%B8%94%E0%B8%81%E0%B8%A3%E0%B8%AD%E0%B8%87%E0%B8%9C%E0%B8%A5%E0%B8%95%E0%B8%A3%E0%B8%A7%E0%B8%88-atk-%E0%B9%81%E0%B8%A5%E0%B8%B0-%E0%B8%9A%E0%B8%B1%E0%B8%95%E0%B8%A3%E0%B8%9B%E0%B8%A3%E0%B8%B0%E0%B8%8A%E0%B8%B2%E0%B8%8A%E0%B8%99-fa32a8d47599)')
st.write('[Github Link](https://github.com/Tanaanan/AOC_ATK_OCR_Classification)')
st.warning("** ระบบ ATK ตอนนี้ใช้เป็น Image classification อยู่เนื่องจาก Object detection ยังมีปัญหาในการ deploy on cloud.. (กำลังอยู่ในขั้นตอน debug!)")
st.sidebar.subheader('More image for test..')
st.sidebar.write('[Github img test set.](https://github.com/Tanaanan/AOC_ATK_OCR_Classification/tree/main/test_set(img))')
st.sidebar.markdown('---')
st.sidebar.subheader('Recomend / Issues report..')
st.sidebar.write('[Google form](https://forms.gle/zYpYFKcTpBoFGxN58)')
st.sidebar.markdown('---')
st.sidebar.subheader('Made by Tanaanan .M')
st.sidebar.write("Contact : [email protected]")
|