Tanaanan commited on
Commit
ce3f819
·
1 Parent(s): a6458aa

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +509 -0
app.py ADDED
@@ -0,0 +1,509 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st #Web App
2
+ from PIL import Image, ImageOps #Image Processing
3
+ import time
4
+ from unittest import result
5
+ from pythainlp.util import isthai
6
+ import numpy as np
7
+ from icevision import tfms
8
+ from icevision.models import model_from_checkpoint
9
+ import easyocr as ocr #OCR
10
+ import editdistance
11
+
12
+
13
+ st.sidebar.image("./logo.png")
14
+ st.sidebar.header("ATK-OCR classification (AOC) Webapp.")
15
+ def load_image(image_file):
16
+ img = Image.open(image_file)
17
+ return img
18
+
19
+
20
+ activities = ["Detection", "About"]
21
+ choice = st.sidebar.selectbox("Select option..",activities)
22
+
23
+ #set default size as 1280 x 1280
24
+ def img_resize(input_path,img_size): # padding
25
+ desired_size = img_size
26
+ im = Image.open(input_path)
27
+ im = ImageOps.exif_transpose(im) # fix image rotating
28
+ width, height = im.size # get img_input size
29
+ if (width == 1280) and (height == 1280):
30
+ new_im = im
31
+ else:
32
+ #im = im.convert('L') #Convert to gray
33
+ old_size = im.size # old_size[0] is in (width, height) format
34
+ ratio = float(desired_size)/max(old_size)
35
+ new_size = tuple([int(x*ratio) for x in old_size])
36
+ im = im.resize(new_size, Image.ANTIALIAS)
37
+ new_im = Image.new("RGB", (desired_size, desired_size))
38
+ new_im.paste(im, ((desired_size-new_size[0])//2,
39
+ (desired_size-new_size[1])//2))
40
+
41
+ return new_im
42
+
43
+ checkpoint_path = "./AOC_weight_97.4.pth"
44
+
45
+ checkpoint_and_model = model_from_checkpoint(checkpoint_path,
46
+ model_name='ross.efficientdet',
47
+ backbone_name='tf_d2',
48
+ img_size=384,
49
+ is_coco=False)
50
+
51
+ model_type = checkpoint_and_model["model_type"]
52
+ backbone = checkpoint_and_model["backbone"]
53
+ class_map = checkpoint_and_model["class_map"]
54
+ img_size = checkpoint_and_model["img_size"]
55
+ #model_type, backbone, class_map, img_size
56
+
57
+ model = checkpoint_and_model["model"]
58
+
59
+ device=next(model.parameters()).device
60
+
61
+ img_size = checkpoint_and_model["img_size"]
62
+ valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()])
63
+
64
+ def get_detection(img_path):
65
+
66
+ #Get_Idcard_detail(file_path=img_path)
67
+ img = Image.open(img_path)
68
+ img = ImageOps.exif_transpose(img) # fix image rotating
69
+ width, height = img.size # get img_input size
70
+ if (width == 1280) and (height == 1280):
71
+ pred_dict = model_type.end2end_detect(img, valid_tfms, model, class_map=class_map, detection_threshold=0.6)
72
+ else:
73
+ #im = im.convert('L') #Convert to gray
74
+ old_size = img.size # old_size[0] is in (width, height) format
75
+ ratio = float(1280)/max(old_size)
76
+ new_size = tuple([int(x*ratio) for x in old_size])
77
+ img = img.resize(new_size, Image.ANTIALIAS)
78
+ new_im = Image.new("RGB", (1280, 1280))
79
+ new_im.paste(img, ((1280-new_size[0])//2,
80
+ (1280-new_size[1])//2))
81
+ pred_dict = model_type.end2end_detect(new_im, valid_tfms, model, class_map=class_map, detection_threshold=0.6)
82
+
83
+
84
+
85
+ #st.write(new_im.size)
86
+
87
+
88
+
89
+ try:
90
+ labels, acc = pred_dict['detection']['labels'][0], pred_dict['detection']['scores'][0]
91
+ acc = acc * 100
92
+ if labels == "Neg":
93
+ labels = "Negative"
94
+ elif labels == "Pos":
95
+ labels = "Positive"
96
+ st.success(f"Result : {labels} with {round(acc, 2)}% confidence.")
97
+ except IndexError:
98
+ st.error("Not found ATK image! ; try to take image again..")
99
+ labels = "None"
100
+ acc = 0
101
+
102
+ def get_img_detection(img_path):
103
+
104
+ #Get_Idcard_detail(file_path=img_path)
105
+ img = Image.open(img_path)
106
+ img = ImageOps.exif_transpose(img) # fix image rotating
107
+ width, height = img.size # get img_input size
108
+ if (width == 1280) and (height == 1280):
109
+ new_im = img
110
+ else:
111
+ #im = im.convert('L') #Convert to gray
112
+ old_size = img.size # old_size[0] is in (width, height) format
113
+ ratio = float(1280)/max(old_size)
114
+ new_size = tuple([int(x*ratio) for x in old_size])
115
+ img = img.resize(new_size, Image.ANTIALIAS)
116
+ new_im = Image.new("RGB", (1280, 1280))
117
+ new_im.paste(img, ((1280-new_size[0])//2,
118
+ (1280-new_size[1])//2))
119
+
120
+ pred_dict = model_type.end2end_detect(new_im, valid_tfms, model, class_map=class_map, detection_threshold=0.6)
121
+
122
+
123
+ return pred_dict['img']
124
+
125
+ def load_model():
126
+ reader = ocr.Reader(['en'],model_storage_directory='.')
127
+ return reader
128
+
129
+ reader = load_model() #load model
130
+
131
+ def Get_Idcard_detail(file_path):
132
+ raw_data = []
133
+ id_num = {"id_num" : "None"}
134
+ name = file_path
135
+ img = Image.open(name)
136
+ img = ImageOps.exif_transpose(img) # fix image rotating
137
+
138
+ width, height = img.size # get img_input size
139
+ if (width == 1280) and (height == 1280):
140
+ result = reader.readtext(np.array(img))
141
+ else:
142
+ #im = im.convert('L') #Convert to gray
143
+ old_size = img.size # old_size[0] is in (width, height) format
144
+ ratio = float(1280)/max(old_size)
145
+ new_size = tuple([int(x*ratio) for x in old_size])
146
+ img = img.resize(new_size, Image.ANTIALIAS)
147
+ new_im = Image.new("RGB", (1280, 1280))
148
+ new_im.paste(img, ((1280-new_size[0])//2,
149
+ (1280-new_size[1])//2))
150
+
151
+ result = reader.readtext(np.array(new_im))
152
+
153
+
154
+
155
+
156
+ result_text = [] #empty list for results
157
+ for text in result:
158
+ result_text.append(text[1])
159
+
160
+
161
+ raw_data = result_text
162
+
163
+
164
+
165
+ def get_english(raw_list): # Cut only english var
166
+ eng_name = []
167
+ thai_name = []
168
+
169
+ for name in raw_list:
170
+ if isthai(name) == True:
171
+ thai_name.append(name)
172
+ else:
173
+ eng_name.append(name)
174
+
175
+ return eng_name
176
+
177
+ raw_data = get_english(raw_data)
178
+
179
+
180
+ def Clear_syntax(raw_list):
181
+
182
+ Clean_syntax = ["","#","{","}","=","/","@","#","$","—","|","%","-","(",")","¥", "[", "]", "‘",':',';']
183
+
184
+ for k in range(len(Clean_syntax)):
185
+ while (Clean_syntax[k] in raw_list): # remove single symbol
186
+ raw_list.remove(Clean_syntax[k])
187
+
188
+ for l in range(len(raw_list)):
189
+ raw_list[l] = raw_list[l].replace("!","l") #split ! --> l (Error OCR Check)
190
+ raw_list[l] = raw_list[l].replace(",",".") #split ! --> l (Error OCR Check)
191
+ raw_list[l] = raw_list[l].replace(" ","") #split " " out from str
192
+ raw_list[l] = raw_list[l].lower() #Set all string to lowercase
193
+
194
+ for m in range(len(raw_list)): #Clear symbol in str "Hi/'" --> "Hi"
195
+ for n in range(len(Clean_syntax)):
196
+ raw_list[m] = raw_list[m].replace(Clean_syntax[n],"")
197
+ return raw_list
198
+
199
+ raw_data = Clear_syntax(raw_data)
200
+
201
+
202
+ def get_idnum(raw_list):
203
+ id_num = {"id_num" : "None"}
204
+ # 1. normal check
205
+ for i in range(len(raw_list)): # check if len(list) = 1, 4, 5, 2, 1 (13 digit idcard) and all is int
206
+ try:
207
+ if ((len(raw_list[i]) == 1) and (len(raw_list[i+1]) == 4) and (len(raw_list[i+2]) == 5) and (len(raw_list[i+3]) == 2) and (len(raw_list[i+4]) == 1)) and ((raw_list[i] + raw_list[i+1] + raw_list[i+2] + raw_list[i+3] + raw_list[i+4]).isnumeric()):
208
+ id_num["id_num"] = (raw_list[i] + raw_list[i+1] + raw_list[i+2] + raw_list[i+3] + raw_list[i+4])
209
+ break
210
+ except:
211
+ pass
212
+
213
+ # 2. Hardcore Check
214
+ if id_num["id_num"] == "None":
215
+ id_count = 0
216
+ index_first = 0
217
+ index_end = 0
218
+ for i in range(len(raw_list)):
219
+ if id_count == 13:
220
+ index_end = i-1 #ลบ 1 index เพราะ ครบ 13 รอบก่อนหน้านี้
221
+ #print(f"index_first == {index_first} index_end == {index_end}")
222
+ #print(f"id = {raw_list[index_first:index_end+1]}")
223
+ id_num["id_num"] = ''.join(raw_list[index_first:index_end+1])
224
+ break
225
+ else:
226
+ if raw_list[i].isnumeric() == True and index_first == 0:
227
+ id_count += len(raw_list[i])
228
+ index_first = i
229
+ elif raw_list[i].isnumeric() == True and index_first != 0:
230
+ id_count += len(raw_list[i])
231
+ elif raw_list[i].isnumeric() == False:
232
+ id_count = 0
233
+ index_first = 0
234
+
235
+ return id_num
236
+
237
+ id_num = (get_idnum(raw_data))
238
+
239
+ #Complete list name check
240
+ def list_name_check(raw_list):
241
+ sum_list = raw_list
242
+ name_key = ['name', 'lastname']
243
+
244
+ #1. name_key check
245
+ if ("name" in sum_list) and ("lastname" in sum_list): # if name and lastname in list pass it!
246
+ pass
247
+ else:
248
+ for i in range(len(name_key)):
249
+ for j in range(len(sum_list)):
250
+ if (editdistance.eval(name_key[i], sum_list[j]) <= 2 ):
251
+ sum_list[j] = name_key[i]
252
+
253
+ gender_key = ["mr.", "mrs.", 'master', 'miss']
254
+ #2 gender_key check
255
+ count = 0 # check for break
256
+ for i in range(len(gender_key)):
257
+ for j in range(len(sum_list)):
258
+ if (count == 0):
259
+ try:
260
+ if (sum_list[i] == "name") or (sum_list[i] == "lastname"): # skip "name" and "lastname"
261
+ pass
262
+ else:
263
+ # mr, mrs sensitive case double check with len(gender_key) == len(keyword)
264
+ if (gender_key[i] == "mr." or gender_key[i] == "mrs.") and (editdistance.eval(gender_key[i], sum_list[j]) <= 3 and (len(gender_key[i]) == len(sum_list[j]))):
265
+ sum_list[j] = gender_key[i]
266
+ count+=1
267
+ #print(1)
268
+ elif (gender_key[i] == "master" or gender_key[i] == "miss") and (editdistance.eval(gender_key[i], sum_list[j]) <= 3 ) and (len(gender_key[i]) == len(sum_list[j])):
269
+ sum_list[j] = gender_key[i]
270
+ count+=1
271
+ #print(1)
272
+ except:
273
+ if (gender_key[i] == "mr." or gender_key[i] == "mrs.") and (editdistance.eval(gender_key[i], sum_list[j]) <= 2 and (len(gender_key[i]) == len(sum_list[j]))):
274
+ sum_list[j] = gender_key[i]
275
+ count+=1
276
+ #print(1)
277
+ elif (gender_key[i] == "master" or gender_key[i] == "miss") and (editdistance.eval(gender_key[i], sum_list[j]) <= 3 ) and (len(gender_key[i]) == len(sum_list[j])):
278
+ sum_list[j] = gender_key[i]
279
+ count+=1
280
+ #print(1)
281
+ else:
282
+ break
283
+
284
+ return sum_list
285
+
286
+ raw_data = list_name_check(raw_data)
287
+
288
+ #get_eng_name
289
+ def get_engname(raw_list):
290
+ get_data = raw_list
291
+ engname_list = []
292
+
293
+ name_pos = []
294
+ lastname_pos = []
295
+ mr_pos = []
296
+ mrs_pos = []
297
+
298
+ # check keyword by name, lastname, master, mr, miss, mrs
299
+ for j in range(len(get_data)): #get "name" , "lastname" index
300
+ if "name" == get_data[j]:
301
+ name_pos.append(j)
302
+ elif "lastname" == get_data[j]:
303
+ lastname_pos.append(j)
304
+ elif ("mr." == get_data[j]) or ("master" == get_data[j]):
305
+ mr_pos.append(j)
306
+ elif ("miss" == get_data[j]) or ("mrs." == get_data[j]):
307
+ mrs_pos.append(j)
308
+
309
+
310
+ if len(name_pos) != 0: #get_engname ex --> ['name', 'master', 'tanaanan', 'lastname', 'chalermpan']
311
+ engname_list = get_data[name_pos[0]:name_pos[0]+6] # select first index กรณีมี "name" มากกว่า 1 ตัว
312
+ elif len(lastname_pos) != 0:
313
+ engname_list = get_data[lastname_pos[0]-3:lastname_pos[0]+3]
314
+ elif len(mr_pos) != 0:
315
+ engname_list = get_data[mr_pos[0]-1:mr_pos[0]+5]
316
+ elif len(mrs_pos) != 0:
317
+ engname_list = get_data[mrs_pos[0]-1:mrs_pos[0]+5]
318
+ else:
319
+ print("Can't find eng name!!")
320
+
321
+ return engname_list
322
+
323
+ raw_data = get_engname(raw_data)
324
+
325
+
326
+
327
+
328
+ def split_genkey(raw_list): # remove stringname + gender_key ex. "missjate" -> "jate"
329
+ data = raw_list
330
+ key = ['mrs.','mr.','master','miss']
331
+ name = "" #gen_key name
332
+ name_pos = 0
333
+ gen_index = 0
334
+ gen_type = "" #male / female
335
+ # check keyword
336
+ for key_val in key:
337
+ for each_text in data:
338
+ if (each_text[:len(key_val)] == key_val) or (editdistance.eval(each_text[:len(key_val)],key_val) <= 1 and (len(each_text[:len(key_val)]) == len(key_val))):
339
+ #each_text = each_text[len(key):]
340
+ if (each_text == "name") or (each_text == "lastname"):
341
+ pass
342
+ else:
343
+ name = (each_text[:len(key_val)])
344
+ name_pos = data.index(each_text) # get_index
345
+ gen_index = len(key_val)
346
+ break
347
+ if (name_pos != 0):
348
+ data[name_pos] = data[name_pos][gen_index:] # split gender_key on list
349
+ for empty_str in range(data.count('')): # clear "empty string"
350
+ data.remove('')
351
+ return data
352
+
353
+ raw_data = split_genkey(raw_data)
354
+
355
+
356
+ def clean_name_data(raw_list): # delete all single string and int string
357
+ for k in range(len(raw_list)):
358
+ try:
359
+ while ((len(raw_list[k]) <= 2) or (raw_list[k].isnumeric() == True)): # remove single symbol
360
+ raw_list.remove(raw_list[k])
361
+ except IndexError:
362
+ pass
363
+ return raw_list
364
+
365
+ raw_data = clean_name_data(raw_data)
366
+
367
+
368
+ def name_sum(raw_list):
369
+ info = {"name" : "None",
370
+ "lastname" : "None"}
371
+ key = ['mr.','mrs.', 'master', 'miss', 'mrs','mr']
372
+ name_pos = 0
373
+ lastname_pos = 0
374
+ for key_val in key: # remove gender_key in string
375
+ if key_val in raw_list:
376
+ raw_list.remove(key_val)
377
+ try:
378
+ for i in range(len(raw_list)):
379
+ if raw_list[i] == "name":
380
+ info["name"] = raw_list[i+1]
381
+ name_pos = i+1
382
+ elif raw_list[i] == "lastname":
383
+ info["lastname"] = raw_list[i+1]
384
+ lastname_pos = i+1
385
+ except:
386
+ pass
387
+
388
+ # กรณี หาอย่างใดอย่าหนึ่งเจอให้ลองข้ามไปดู 1 index name, "name_val", lastname , "lastname_val"
389
+ if (info["name"] != "None") and (info["lastname"] == "None"):
390
+ try:
391
+ info["lastname"] = raw_list[name_pos+2]
392
+ except:
393
+ pass
394
+ elif (info["lastname"] != "None") and (info["name"] == "None"):
395
+ try:
396
+ info["name"] = raw_list[lastname_pos-2]
397
+ except:
398
+ pass
399
+
400
+ # remove . on "mr." and "mrs."
401
+ info["name"] = info["name"].replace(".","")
402
+ info["lastname"] = info["lastname"].replace(".","")
403
+
404
+
405
+ return info
406
+
407
+ st.subheader("Process Completed!.....")
408
+ st.write(id_num)
409
+ st.write(name_sum(raw_data))
410
+
411
+
412
+
413
+
414
+ if choice =='About' :
415
+ st.header("About...")
416
+
417
+ st.subheader("AOC คืออะไร ?")
418
+ st.write("- เป็นระบบที่สามารถคัดกรองผลตรวจเชื้อของ COVID-19 ได้ผ่าน ที่ตรวจ ATK (Antigen Test Kit) ควบคู่กับบัตรประชาชน จากรูปภาพได้โดยอัตโนมัติ")
419
+
420
+ st.subheader("AOC ทำอะไรได้บ้าง ?")
421
+ st.write("- ตรวจจับผลตรวจ ATK (Obj detection)")
422
+ st.write("- ตรวจจับชื่อ-นามสกุล (OCR)")
423
+ st.write("- ตรวจจับเลขบัตรประชาชน (OCR)")
424
+
425
+ st.subheader("AOC ดีกว่ายังไง ?")
426
+ st.write("จากผลที่ได้จากการเปรียบเทียบกันระหว่าง model (AOC) กับ คน (Baseline) จำนวน 30 ภาพ / คน ได้ผลดังนี้")
427
+ st.image("./acc_table.png")
428
+ st.write("จากผลที่ได้สรุปได้ว่า ส่วนที่ผ่าน Baseline และมีประสิทธิภาพดีกว่าคัดกรองด้วยคนคือ ผลตรวจ ATK ได้ผลที่ 100 %, เลขบัตรประชน ได้ผลที่ 100 % และ ความเร็วในการคัดกรอง ได้ผลที่ 4.84 วินาที ซึ่งมีความเร็วมากกว่า 81% เมื่อเทียบกับคัดกรองด้วยคน ถือว่ามีประสิทธิภาพที่สูงมากในการคัดกรอง และ มีประสิทธิภาพมากกว่าการคัดแยกด้วยมนุษย์")
429
+ st.write("** ความเร็วที่โมเดลทำได้อาจไม่ตรงตามที่ deploy บนเว็บ เนื่องจากในเว็บ ไม่มี GPU ในการประมวลผลอาจทำให้โมเดลใช้เวลาในการประมวลที่นานกว่าตอนใช้ GPU")
430
+
431
+
432
+ st.subheader("คำแนะนำในการใช้งาน")
433
+ st.write("- ในการใช้งานให้ถ่ายรูปภาพบัตรประชาชนในแนวตั้งเท่านั้น เนื่องจากถ้าเป็นแนวอื่นอาจทำให้การตรวจจับคลาดเคลื่อนเอาได้")#3
434
+ st.write("- ภาพไม่ควรมีแสงที่สว่างมากเกืนไป และ มืดเกินไป มิฉะนั้นอาจทำให้การตรวจจับคลาดเคลื่อนเอาได้")#4
435
+ st.write("- ภาพไม่ควรที่จะอยู่ไกลเกินไป และ ควรมีความชัด มิฉะนั้นอาจทำให้การตรวจจับคลาดเคลื่อน หรือ ไม่สามารถตรวจจับได้")#5
436
+
437
+ st.subheader("รายละเอียดเพิ่มเติม")
438
+ st.write('[Medium blog](https://medium.com/@mjsalyjoh/atk-ocr-classification-aoc-%E0%B8%A3%E0%B8%B0%E0%B8%9A%E0%B8%9A%E0%B8%84%E0%B8%B1%E0%B8%94%E0%B8%81%E0%B8%A3%E0%B8%AD%E0%B8%87%E0%B8%9C%E0%B8%A5%E0%B8%95%E0%B8%A3%E0%B8%A7%E0%B8%88-atk-%E0%B9%81%E0%B8%A5%E0%B8%B0-%E0%B8%9A%E0%B8%B1%E0%B8%95%E0%B8%A3%E0%B8%9B%E0%B8%A3%E0%B8%B0%E0%B8%8A%E0%B8%B2%E0%B8%8A%E0%B8%99-fa32a8d47599)')
439
+ st.write('[Github Link](https://github.com/Tanaanan/AOC_ATK_OCR_Classification)')
440
+
441
+
442
+
443
+
444
+ elif choice == "Detection":
445
+ st.header(" Antigen test kit + Identification card detector.")
446
+ pages_name = ['ATK + Idcard Detect', 'ATK Detect', 'Idcard Detect']
447
+ page = st.radio('Select option mode :', pages_name)
448
+
449
+ image = st.file_uploader(label = "upload ATK + Idcard img here.. OwO",type=['png','jpg','jpeg'])
450
+ if image is not None:
451
+ new_img = img_resize(image, 1280)
452
+ if page == "ATK + Idcard Detect":
453
+ st.image(get_img_detection(image))
454
+ with st.spinner("🤖 ATK + Idcard Working... "):
455
+
456
+ t1 = time.perf_counter()
457
+ Get_Idcard_detail(image)
458
+ get_detection(image)
459
+ t2 = time.perf_counter()
460
+ st.write('time taken to run: {:.2f} sec'.format(t2-t1))
461
+
462
+ elif page == "ATK Detect":
463
+ st.image(get_img_detection(image))
464
+ with st.spinner("🤖 ATK Working... "):
465
+ t1 = time.perf_counter()
466
+ st.subheader("Process Completed!.....")
467
+ get_detection(image)
468
+ t2 = time.perf_counter()
469
+ st.write('time taken to run: {:.2f} sec'.format(t2-t1))
470
+
471
+ elif page == "Idcard Detect":
472
+ st.image(new_img)
473
+ with st.spinner("🤖 Idcard Working... "):
474
+ t1 = time.perf_counter()
475
+ Get_Idcard_detail(image)
476
+ t2 = time.perf_counter()
477
+ st.write('time taken to run: {:.2f} sec'.format(t2-t1))
478
+
479
+
480
+
481
+
482
+
483
+ else:
484
+ st.write("## Waiting for image..")
485
+ st.image('atk_idcard.jpeg')
486
+
487
+ st.caption("Made by Tanaanan .M")
488
+
489
+
490
+ st.sidebar.subheader('More image for test..')
491
+ st.sidebar.write('[Github img test set.](https://github.com/Tanaanan/AOC_ATK_OCR_Classification/tree/main/test_set(img))')
492
+
493
+
494
+
495
+
496
+
497
+
498
+
499
+
500
+
501
+
502
+ st.sidebar.markdown('---')
503
+ st.sidebar.subheader('Recomend / Issues report..')
504
+ st.sidebar.write('[Google form](https://forms.gle/zYpYFKcTpBoFGxN58)')
505
+
506
+
507
+ st.sidebar.markdown('---')
508
+ st.sidebar.subheader('Made by Tanaanan .M')
509
+ st.sidebar.write("Contact : [email protected]")