Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ from transformers.pipelines.audio_utils import ffmpeg_read
|
|
9 |
import tempfile
|
10 |
import os
|
11 |
|
12 |
-
MODEL_NAME = "TalTechNLP/whisper-large-v3-
|
13 |
BATCH_SIZE = 8
|
14 |
FILE_LIMIT_MB = 1000
|
15 |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
@@ -84,8 +84,8 @@ def transcribe(file_path):
|
|
84 |
|
85 |
# Calculate the length in seconds
|
86 |
audio_length = len(audio_data) / 16000
|
87 |
-
|
88 |
-
expected_transcribe_duration = 59
|
89 |
gr.Info(f"Starting to transcribe, requesting a GPU for {expected_transcribe_duration} seconds")
|
90 |
return dynamic_gpu_duration(do_transcribe, expected_transcribe_duration, file_path)
|
91 |
|
|
|
9 |
import tempfile
|
10 |
import os
|
11 |
|
12 |
+
MODEL_NAME = "TalTechNLP/whisper-large-v3-et-subs"
|
13 |
BATCH_SIZE = 8
|
14 |
FILE_LIMIT_MB = 1000
|
15 |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
|
|
84 |
|
85 |
# Calculate the length in seconds
|
86 |
audio_length = len(audio_data) / 16000
|
87 |
+
expected_transcribe_duration = max(59, int(audio_length / 5.0))
|
88 |
+
#expected_transcribe_duration = 59
|
89 |
gr.Info(f"Starting to transcribe, requesting a GPU for {expected_transcribe_duration} seconds")
|
90 |
return dynamic_gpu_duration(do_transcribe, expected_transcribe_duration, file_path)
|
91 |
|