import spaces
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
MODEL_NAME = "TalTechNLP/whisper-large-v3-turbo-et-subs"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
def convert_to_vtt(whisper_output):
"""
Convert Whisper ASR output to VTT subtitle format.
Args:
whisper_output (dict): Dictionary containing Whisper ASR output with 'text' and 'chunks'
Returns:
str: VTT formatted subtitles as a string
"""
def format_timestamp(seconds):
"""Convert seconds to VTT timestamp format (HH:MM:SS.mmm)"""
if seconds is None:
return "99:59:59.999" # Use max time for None values
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
seconds_remainder = seconds % 60
return f"{hours:02d}:{minutes:02d}:{seconds_remainder:06.3f}".replace('.', ',')
# Start with VTT header
vtt_output = "WEBVTT\n\n"
# Process each chunk
for i, chunk in enumerate(whisper_output['chunks'], 1):
start_time, end_time = chunk['timestamp']
# Format the subtitle entry
vtt_output += f"{i}\n"
vtt_output += f"{format_timestamp(start_time)} --> {format_timestamp(end_time)}\n"
vtt_output += f"{chunk['text'].strip()}\n\n"
return vtt_output
def dynamic_gpu_duration(func, duration, *args):
@spaces.GPU(duration=duration)
def wrapped_func():
return func(*args)
return wrapped_func()
@spaces.GPU
def dummy_gpu():
return None
def do_transcribe(inputs):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe", "language": "et"}, return_timestamps=True)
return convert_to_vtt(result)
def transcribe(file_path):
with open(file_path, "rb") as f:
audio_data = ffmpeg_read(f.read(), 16000)
# Calculate the length in seconds
audio_length = len(audio_data) / 16000
#expected_transcribe_duration = max(59, int(audio_length / 5.0))
expected_transcribe_duration = 59
gr.Info(f"Starting to transcribe, requesting a GPU for {expected_transcribe_duration} seconds")
return dynamic_gpu_duration(do_transcribe, expected_transcribe_duration, file_path)
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'
'
" "
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def yt_transcribe(yt_url, max_filesize=75.0):
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
text = transcribe(transcribe, filepath)
return text
demo = gr.Blocks(theme=gr.themes.Ocean())
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath")
],
#outputs="text",
outputs=gr.Textbox(label="VTT subtitles", elem_id="text", show_label=True, show_copy_button=True, autoscroll=False, interactive=True),
title="Generate Estonian subtitles",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file")
],
#outputs="text",
outputs=gr.Textbox(label="VTT subtitles", elem_id="text", show_label=True, show_copy_button=True, autoscroll=False, interactive=True),
title="Generate Estonian subtitles",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
],
#outputs=["html", "text"],
outputs=gr.Textbox(label="VTT subtitles", elem_id="text", show_label=True, show_copy_button=True, autoscroll=False, interactive=True),
title="Generate Estonian subtitles",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
" arbitrary length. NB! YouTube seems to often block download requests from Huggingface and there is nothing we can do about it."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
demo.queue().launch(ssr_mode=False)