File size: 5,745 Bytes
9df835b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import numpy as np
import gradio as gr
from pypinyin import lazy_pinyin
from pinyin_dict import PINYIN_DICT
from espnet_model_zoo.downloader import ModelDownloader
from espnet2.fileio.read_text import read_label
from espnet2.bin.svs_inference import SingingGenerate
spks = {
"singer1 (man)": 1,
"singer2 (man)": 2,
"singer3 (female)": 5,
"singer4 (female)": 9,
"singer5 (man)": 18,
"singer6 (female)": 15,
"singer7 (man)": 23,
"singer8 (man)": 25,
"singer9 (female)": 29,
"singer10 (man)": 27,
}
def gen_song(lang, tempo, texts, durs, pitchs, spk):
if lang == "zh":
PRETRAIN_MODEL = "espnet/aceopencpop_svs_visinger2_40singer_pretrain"
fs = 44100
text_list = lazy_pinyin(texts)
# preprocess
if texts is None:
return (fs, np.array([0.0])), "Error: No Text provided!"
if durs is None:
return (fs, np.array([0.0])), "Error: No Dur provided!"
if pitchs is None:
return (fs, np.array([0.0])), "Error: No Pitch provided!"
dur_list = durs.strip().split()
pitch_list = pitchs.strip().split()
if len(text_list) != len(dur_list):
return (fs, np.array([0.0])), f"Error: len in text({len(text_list)}) mismatch with duration({len(dur_list)})!"
if len(text_list) != len(pitch_list):
return (fs, np.array([0.0])), f"Error: len in text({len(text_list)}) mismatch with pitch({len(pitch_list)})!"
## text to phoneme
sybs = []
if lang == "zh":
pinyin_dict = PINYIN_DICT
for text in text_list:
text = text.lower()
if text not in pinyin_dict:
return (fs, np.array([0.0])), f"Error: pinyin `{text}` is invalid!"
phns = "_".join(pinyin_dict[text])
sybs.append(phns)
## pitch
pitch_dict = {}
with open("./midi-note.scp", "r", encoding="utf-8") as f:
for line in f:
items = line.strip().split()
pitch_dict[items[0]] = int(items[1])
pitch_dict[items[1]] = int(items[1])
labels = []
notes = []
st = 0
for phns, dur, pitch in zip(sybs, dur_list, pitch_list):
if pitch not in pitch_dict:
return (fs, np.array([0.0])), f"Error: pitch `{pitch}` is invalid!"
pitch = pitch_dict[pitch]
dur = float(dur)
phn_list = phns.split("_")
lyric = "".join(phn_list)
note = [st, st + dur, lyric, pitch, phns]
st += dur
notes.append(note)
for phn in phn_list:
labels.append(phn)
phns_str = " ".join(labels)
batch = {
"score": (
int(tempo),
notes,
),
"text": phns_str,
}
# Infer
device = "cpu"
# device = "cuda" if torch.cuda.is_available() else "cpu"
d = ModelDownloader()
pretrain_downloaded = d.download_and_unpack(PRETRAIN_MODEL)
svs = SingingGenerate(
train_config = pretrain_downloaded["train_config"],
model_file = pretrain_downloaded["model_file"],
device = device
)
sid = spks[spk]
output_dict = svs(batch, sids=np.array([sid]))
wav_info = output_dict["wav"].cpu().numpy()
return (fs, wav_info), "success!"
title = "Demo of Singing Voice Synthesis in Muskits-ESPnet"
description = """
This is the demo page of our toolkit <b>Muskits-ESPnet: A Comprehensive Toolkit for Singing Voice Synthesis in New Paradigm<b>.
<p>How to use:</p>
<ol>
<li> Choose language ID. Language id </li>
<li> Input tempo in integer </li>
<li> Input text, duration, pitch of equal length </li>
<li> Choose ons singer </li>
<li> Click submit button </li>
</ol>
"""
article = """
<div style='margin:20px auto;'>
<p>References: <a href="https://arxiv.org/abs/2409.07226">Muskits-ESPnet paper</a> |
<a href="https://github.com/espnet/espnet">espnet GitHub</a> |
<a href="https://huggingface.co/espnet/aceopencpop_svs_visinger2_40singer_pretrain">pretrained model</a></p>
<pre>
@inproceedings{wu2024muskits,
title = {{Muskits-ESPnet}: A Comprehensive Toolkit for Singing Voice Synthesis in New Paradigm},
author = {Yuning Wu and Jiatong Shi and Yifeng Yu and Yuxun Tang and Tao Qian and Yueqian Lin and Jionghao Han and Xinyi Bai and Shinji Watanabe and Qin Jin},
booktitle={Proc. ACM Multimedia},
year={2024},
}
</pre>
</div>
"""
# SP: silence, AP: aspirate.
examples = [
["zh", 89, "雨淋湿了SP天空AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.50 0.21", "60 62 62 62 0 62 58 0", "singer1 (man)"],
["zh", 89, "雨淋湿了SP天空AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.50 0.21", "C4 D4 D4 D4 rest D4 A#3 rest", "singer2 (man)"],
["zh", 89, "雨淋湿了SP天空AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.50 0.21", "C4 D4 D4 D4 rest D4 Bb3 rest", "singer3 (female)"],
]
gr.Interface(
fn=gen_song,
inputs=[
gr.Radio(label="language", choices=["zh"], value="zh"),
gr.Textbox(label="Tempo"),
gr.Textbox(label="Text"),
gr.Textbox(label="Duration"),
gr.Textbox(label="Pitch"),
gr.Radio(
label="Singer",
choices=[
"singer1 (man)",
"singer2 (man)",
"singer3 (female)",
"singer4 (female)",
"singer5 (man)",
"singer6 (female)",
"singer7 (man)",
"singer8 (man)",
"singer9 (female)",
"singer10 (man)",
],
value="singer1 (man)"
),
],
outputs=[
gr.Audio(label="Generated Song", type="numpy"),
gr.Textbox(label="Running Status"),
],
title=title,
description=description,
article=article,
examples=examples,
).launch()
|