File size: 11,725 Bytes
8d24b90 9df835b 8d24b90 1324481 9df835b 8d24b90 903962c 9df835b 8d24b90 9df835b 903962c 8d24b90 903962c 8d24b90 903962c 8d24b90 9df835b 8d24b90 1324481 8d24b90 9df835b 8d24b90 9df835b 8d24b90 9df835b 8d24b90 1324481 8d24b90 9df835b 1324481 9df835b 1324481 9df835b 1324481 9df835b 1324481 9df835b 903962c 8d24b90 9df835b 903962c 9df835b 8d24b90 9df835b a4ba271 8d24b90 a4ba271 903962c 8d24b90 1324481 8d24b90 903962c 1324481 903962c 8d24b90 1324481 8d24b90 9df835b 903962c 9df835b 8d24b90 9df835b 903962c 1324481 903962c 1324481 9df835b 8d24b90 9df835b 8d24b90 903962c 9df835b 903962c 9df835b 903962c 9df835b 8d24b90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import os
import numpy as np
import gradio as gr
import pyopenjtalk
from util import preprocess_input, get_tokenizer, load_pitch_dict, get_pinyin
from espnet_model_zoo.downloader import ModelDownloader
from espnet2.fileio.read_text import read_label
from espnet2.bin.svs_inference import SingingGenerate
singer_embeddings = {
"singer1 (male)": "resource/singer/singer_embedding_ace-1.npy",
"singer2 (female)": "resource/singer/singer_embedding_ace-2.npy",
"singer3 (male)": "resource/singer/singer_embedding_ace-3.npy",
"singer4 (female)": "resource/singer/singer_embedding_ace-8.npy",
"singer4 (male)": "resource/singer/singer_embedding_ace-7.npy",
"singer6 (female)": "resource/singer/singer_embedding_itako.npy",
"singer7 (male)": "resource/singer/singer_embedding_ofuton.npy",
"singer8 (female)": "resource/singer/singer_embedding_kising_orange.npy",
"singer9 (male)": "resource/singer/singer_embedding_m4singer_Tenor-1.npy",
"singer10 (female)": "resource/singer/singer_embedding_m4singer_Alto-4.npy",
}
langs = {
"zh": 2,
"jp": 1,
}
def gen_song(lang, texts, durs, pitchs, spk):
fs = 44100
tempo = 120
PRETRAIN_MODEL = "TangRain/mixdata_svs_visinger2_spkembed_lang_pretrained"
# pretrain_downloaded = {
# "train_config": "/data7/tyx/pretrained_model/mixdata_svs_visinger2_spkembed_lang_pretrained/exp/svs_train_visinger2_spk_embed_lang_raw_phn_None_mix/config.yaml",
# "model_file": "/data7/tyx/pretrained_model/mixdata_svs_visinger2_spkembed_lang_pretrained/exp/svs_train_visinger2_spk_embed_lang_raw_phn_None_mix/500epoch.pth",
# }
if texts is None:
return (fs, np.array([0.0])), "Error: No Text provided!"
if durs is None:
return (fs, np.array([0.0])), "Error: No Dur provided!"
if pitchs is None:
return (fs, np.array([0.0])), "Error: No Pitch provided!"
# preprocess
if lang == "zh":
texts = preprocess_input(texts, "")
text_list = get_pinyin(texts)
elif lang == "jp":
texts = preprocess_input(texts, " ")
text_list = texts.strip().split()
durs = preprocess_input(durs, " ")
dur_list = durs.strip().split()
pitchs = preprocess_input(pitchs, " ")
pitch_list = pitchs.strip().split()
if len(text_list) != len(dur_list):
return (fs, np.array([0.0])), f"Error: len in text({len(text_list)}) mismatch with duration({len(dur_list)})!"
if len(text_list) != len(pitch_list):
return (fs, np.array([0.0])), f"Error: len in text({len(text_list)}) mismatch with pitch({len(pitch_list)})!"
## text to phoneme
tokenizer = get_tokenizer(lang)
sybs = []
for text in text_list:
if text == "AP" or text == "SP":
rev = [text]
elif text == "-" or text == "——":
rev = [text]
else:
rev = tokenizer(text)
rev = [phn + f"@{lang}" for phn in rev]
if rev == False:
return (fs, np.array([0.0])), f"Error: text `{text}` is invalid!"
phns = "_".join(rev)
sybs.append(phns)
pitch_dict = load_pitch_dict()
labels = []
notes = []
st = 0
pre_phn = ""
for phns, dur, pitch in zip(sybs, dur_list, pitch_list):
if phns == "-" or phns == "——":
phns = pre_phn
if pitch not in pitch_dict:
return (fs, np.array([0.0])), f"Error: pitch `{pitch}` is invalid!"
pitch = pitch_dict[pitch]
phn_list = phns.split("_")
lyric = "".join(phn_list)
dur = float(dur)
note = [st, st + dur, lyric, pitch, phns]
st += dur
notes.append(note)
for phn in phn_list:
labels.append(phn)
pre_phn = labels[-1]
phns_str = " ".join(labels)
batch = {
"score": (
int(tempo),
notes,
),
"text": phns_str,
}
# print(batch)
# return (fs, np.array([0.0])), "success!"
# Infer
device = "cpu"
# device = "cuda" if torch.cuda.is_available() else "cpu"
d = ModelDownloader()
pretrain_downloaded = d.download_and_unpack(PRETRAIN_MODEL)
svs = SingingGenerate(
train_config = pretrain_downloaded["train_config"],
model_file = pretrain_downloaded["model_file"],
device = device
)
# sid = spks[spk]
lid = langs[lang]
spk_embed = np.load(singer_embeddings[spk])
# output_dict = svs(batch, sids=np.array([sid]))
output_dict = svs(batch, lids=np.array([lid]), spembs=spk_embed)
wav_info = output_dict["wav"].cpu().numpy()
return (fs, wav_info), "success!"
title = "Demo of Singing Voice Synthesis in Muskits-ESPnet"
description = """
<div style="font-size: 20px; ">
<p>This is the demo page of our toolkit <b>Muskits-ESPnet: A Comprehensive Toolkit for Singing Voice Synthesis in New Paradigm</b>.</p>
<p>Singing Voice Synthesis (SVS) takes a music score as input and generates singing vocal with the voice of a specific singer.\n
Music score contains information about lyrics, as well as duration and pitch of each word in lyrics.</p>
<h1>How to use:</h1>
<ol>
<li> <b>Choose language ID</b>: "zh" indicates lyrics input in Chinese, and "jp" indicates lyrics input in Japanese. </li>
<li> <b>Input lyrics</b>:
<ul>
<li> Lyrics use Chinese characters when the language is 'zh' and hiragana when the language is 'jp'. </li>
<li> Special characters such as 'AP' (breath), 'SP' (silence), and '-' (slur, only for 'zh') can also be used. </li>
<li> Lyrics sequence should be separated by either a space (' ') or a newline ('\\n'), without the quotation marks. </li>
</ul>
</li>
<li> <b>Input durations</b>:
<ul>
<li> Length of duration sequence should <b>be same as lyric sequence</b>, with each duration corresponding to the respective lyric. </li>
<li> Durations sequence should be separated by either a space (' ') or a newline ('\\n'), without the quotation marks. </li>
</ul>
</li>
<li> <b>Input pitches</b>:
<ul>
<li> Length of pitch sequence should <b>be same as lyric sequence</b>, with each pitch corresponding to the respective lyric. </li>
<li> Pitches sequence should be separated by either a space (' ') or a newline ('\\n'), without the quotation marks. </li>
</ul>
</li>
<li> <b>Choose one singer</b> </li>
<li> <b>Click submit button</b> </li>
</ol>
<h1>Notice:</h1>
<ul>
<li> Values outside this range may result in suboptimal generation quality! </li>
</ul>
</div>
"""
article = """
<div style='margin:20px auto;'>
<p>References: <a href="https://arxiv.org/abs/2409.07226">Muskits-ESPnet paper</a> |
<a href="https://github.com/espnet/espnet">espnet GitHub</a> |
<a href="https://huggingface.co/espnet/mixdata_svs_visinger2_spkembed_lang_pretrained">pretrained model</a></p>
<pre>
@inproceedings{wu2024muskits,
title = {{Muskits-ESPnet}: A Comprehensive Toolkit for Singing Voice Synthesis in New Paradigm},
author = {Yuning Wu and Jiatong Shi and Yifeng Yu and Yuxun Tang and Tao Qian and Yueqian Lin and Jionghao Han and Xinyi Bai and Shinji Watanabe and Qin Jin},
booktitle={Proceedings of the 32st ACM International Conference on Multimedia},
year={2024},
}
</pre>
</div>
"""
# SP: silence, AP: aspirate.
examples = [
["zh", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "60 62 62 62 0 62 58 0\n58 58 0 58 58 63 0", "singer1 (male)"],
["zh", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "C4 D4 D4 D4 rest D4 A#3 rest\nA#3 A#3 rest A#3 A#3 D#4 rest", "singer1 (male)"],
["zh", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "C#4 D#4 D#4 D#4 rest D#4 B3 rest\nB3 B3 rest B3 B3 E4 rest", "singer1 (male)"],
["zh", "你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.11 0.33 0.29 0.13 0.15 0.48\n0.24 0.18 0.34 0.15 0.27 0.28 0.63 0.44", "63 63 63 63 0 63\n62 62 62 63 65 63 62 0", "singer1 (male)"],
["zh", "你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.23 0.66 0.58 0.27 0.3 0.97\n0.48 0.36 0.69 0.3 0.53 0.56 1.27 0.89", "63 63 63 63 0 63\n62 62 62 63 65 63 62 0", "singer1 (male)"],
["zh", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP\n你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34\n0.11 0.33 0.29 0.13 0.15 0.48\n0.24 0.18 0.34 0.15 0.27 0.28 0.63 0.44", "60 62 62 62 0 62 58 0\n58 58 0 58 58 63 0\n63 63 63 63 0 63\n62 62 62 63 65 63 62 0", "singer1 (male)"],
["zh", "修 炼 爱 情 的 心 酸 SP AP", "0.42 0.21 0.19 0.28 0.22 0.33 1.53 0.1 0.29", "68 70 68 66 63 68 68 0 0", "singer2 (female)"],
["zh", "学 会 放 好 以 前 的 渴 望 SP AP", "0.3 0.22 0.29 0.27 0.25 0.44 0.54 0.29 1.03 0.08 0.39", "68 70 68 66 61 68 68 65 66 0 0", "singer2 (female)"],
["zh", "SP 你 看 着 车 窗 - SP", " 0.41 0.96 0.7 0.64 1.12 1.14 1.04 0.29", "0 60 60 62 60 64 65 0", "singer3 (male)"],
["jp", "い じ ん さ ん に つ れ ら れ て", "0.6 0.3 0.3 0.3 0.3 0.6 0.6 0.3 0.3 0.6 0.23", "60 60 60 56 56 56 55 55 55 53 56", "singer8 (female)"],
["jp", "い じ ん さ ん に つ れ ら れ て", "0.6 0.3 0.3 0.3 0.3 0.6 0.6 0.3 0.3 0.6 0.23", "62 62 62 58 58 58 57 57 57 55 58", "singer8 (female)"],
["jp", "い じ ん さ ん に つ れ ら れ て", "1.2 0.6 0.6 0.6 0.6 1.2 1.2 0.6 0.6 1.2 0.45", "60 60 60 56 56 56 55 55 55 53 56", "singer8 (female)"],
["jp", "い じ ん さ ん に つ れ ら れ て", "0.3 0.15 0.15 0.15 0.15 0.3 0.3 0.15 0.15 0.3 0.11", "60 60 60 56 56 56 55 55 55 53 56", "singer8 (female)"],
["jp", "きっ と と べ ば そ ら ま で と ど く AP", "0.39 2.76 0.2 0.2 0.39 0.39 0.2 0.2 0.39 0.2 0.2 0.59 1.08", "64 71 68 69 71 71 69 68 66 68 69 68 0", "singer2 (female)"],
["jp", "じゃ の め で お む か え う れ し い な", "0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.65", "60 60 60 62 64 67 69 69 64 64 64 62 60", "singer10 (female)"],
["jp", "お と め わ ら い か ふぁ い や ら い か ん な い す ぶ ろ うぃ ん ぶ ろ うぃ ん い ん ざ うぃ ん", "0.15 0.15 0.15 0.15 0.3 0.15 0.3 0.15 0.15 0.3 0.07 0.07 0.15 0.15 0.15 0.15 0.15 0.15 0.45 0.07 0.07 0.07 0.38 0.07 0.07 0.15 0.15 0.3 0.15 0.15", "67 67 67 67 67 67 69 67 67 69 67 67 64 64 64 64 64 64 62 64 64 62 62 64 64 62 62 59 59 59", "singer9 (male)"],
]
app = gr.Interface(
fn=gen_song,
inputs=[
gr.Radio(label="language", choices=["zh", "jp"], value="zh"),
gr.Textbox(label="Lyrics"),
gr.Textbox(label="Duration"),
gr.Textbox(label="Pitch"),
gr.Radio(
label="Singer",
choices=[
"singer1 (male)",
"singer2 (female)",
"singer3 (male)",
"singer4 (female)",
"singer4 (male)",
"singer6 (female)",
"singer7 (male)",
"singer8 (female)",
"singer9 (male)",
"singer10 (female)",
],
value="singer1 (male)",
),
],
outputs=[
gr.Audio(label="Generated Song", type="numpy"),
gr.Textbox(label="Running Status"),
],
title=title,
description=description,
article=article,
examples=examples,
)
app.launch()
|