File size: 11,725 Bytes
8d24b90
9df835b
 
8d24b90
1324481
9df835b
 
 
 
 
 
8d24b90
903962c
 
 
 
 
 
 
 
 
 
9df835b
 
8d24b90
 
 
 
9df835b
903962c
8d24b90
903962c
 
8d24b90
903962c
 
8d24b90
9df835b
 
 
 
 
 
 
8d24b90
 
 
1324481
8d24b90
 
 
 
9df835b
8d24b90
9df835b
 
 
 
 
 
 
 
8d24b90
9df835b
8d24b90
 
 
1324481
 
8d24b90
 
 
 
 
 
 
 
 
9df835b
 
 
 
1324481
9df835b
1324481
 
9df835b
 
 
 
 
1324481
9df835b
 
 
 
 
1324481
9df835b
 
 
 
 
 
 
 
 
903962c
 
8d24b90
9df835b
 
 
903962c
 
9df835b
 
 
 
 
8d24b90
 
 
 
 
9df835b
 
 
 
 
 
 
a4ba271
8d24b90
a4ba271
903962c
8d24b90
1324481
8d24b90
 
903962c
 
1324481
 
903962c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d24b90
 
 
 
1324481
 
 
 
8d24b90
9df835b
 
 
 
 
 
 
903962c
9df835b
 
 
 
 
8d24b90
9df835b
 
 
 
 
 
 
 
 
 
903962c
 
1324481
 
 
 
 
 
 
 
 
 
 
903962c
1324481
 
9df835b
 
8d24b90
9df835b
 
8d24b90
903962c
9df835b
 
 
 
 
903962c
 
 
 
 
 
 
 
 
 
9df835b
903962c
9df835b
 
 
 
 
 
 
 
 
 
8d24b90
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import numpy as np
import gradio as gr
import pyopenjtalk
from util import preprocess_input, get_tokenizer, load_pitch_dict, get_pinyin

from espnet_model_zoo.downloader import ModelDownloader
from espnet2.fileio.read_text import read_label
from espnet2.bin.svs_inference import SingingGenerate


singer_embeddings = {
    "singer1 (male)": "resource/singer/singer_embedding_ace-1.npy",
    "singer2 (female)": "resource/singer/singer_embedding_ace-2.npy",
    "singer3 (male)": "resource/singer/singer_embedding_ace-3.npy",
    "singer4 (female)": "resource/singer/singer_embedding_ace-8.npy",
    "singer4 (male)": "resource/singer/singer_embedding_ace-7.npy",
    "singer6 (female)": "resource/singer/singer_embedding_itako.npy",
    "singer7 (male)": "resource/singer/singer_embedding_ofuton.npy",
    "singer8 (female)": "resource/singer/singer_embedding_kising_orange.npy",
    "singer9 (male)": "resource/singer/singer_embedding_m4singer_Tenor-1.npy",
    "singer10 (female)": "resource/singer/singer_embedding_m4singer_Alto-4.npy",
}

langs = {
    "zh": 2,
    "jp": 1,
}

def gen_song(lang, texts, durs, pitchs, spk):
    fs = 44100
    tempo = 120
    PRETRAIN_MODEL = "TangRain/mixdata_svs_visinger2_spkembed_lang_pretrained"
    # pretrain_downloaded = {
    #     "train_config": "/data7/tyx/pretrained_model/mixdata_svs_visinger2_spkembed_lang_pretrained/exp/svs_train_visinger2_spk_embed_lang_raw_phn_None_mix/config.yaml",
    #     "model_file": "/data7/tyx/pretrained_model/mixdata_svs_visinger2_spkembed_lang_pretrained/exp/svs_train_visinger2_spk_embed_lang_raw_phn_None_mix/500epoch.pth",
    # }
    if texts is None:
        return (fs, np.array([0.0])), "Error: No Text provided!"
    if durs is None:
        return (fs, np.array([0.0])), "Error: No Dur provided!"
    if pitchs is None:
        return (fs, np.array([0.0])), "Error: No Pitch provided!"

    # preprocess
    if lang == "zh":
        texts = preprocess_input(texts, "")
        text_list = get_pinyin(texts)
    elif lang == "jp":
        texts = preprocess_input(texts, " ")
        text_list = texts.strip().split()
    durs = preprocess_input(durs, " ")
    dur_list = durs.strip().split()
    pitchs = preprocess_input(pitchs, " ")
    pitch_list = pitchs.strip().split()

    if len(text_list) != len(dur_list):
        return (fs, np.array([0.0])), f"Error: len in text({len(text_list)}) mismatch with duration({len(dur_list)})!"
    if len(text_list) != len(pitch_list):
        return (fs, np.array([0.0])), f"Error: len in text({len(text_list)}) mismatch with pitch({len(pitch_list)})!"

    ## text to phoneme
    tokenizer = get_tokenizer(lang)
    sybs = []
    for text in text_list:
        if text == "AP" or text == "SP":
            rev = [text]
        elif text == "-" or text == "——":
            rev = [text]
        else:
            rev = tokenizer(text)
            rev = [phn + f"@{lang}" for phn in rev]
        if rev == False:
            return (fs, np.array([0.0])), f"Error: text `{text}` is invalid!"
        phns = "_".join(rev)
        sybs.append(phns)

    pitch_dict = load_pitch_dict()

    labels = []
    notes = []
    st = 0
    pre_phn = ""
    for phns, dur, pitch in zip(sybs, dur_list, pitch_list):
        if phns == "-" or phns == "——":
            phns = pre_phn
        if pitch not in pitch_dict:
            return (fs, np.array([0.0])), f"Error: pitch `{pitch}` is invalid!"
        pitch = pitch_dict[pitch]
        phn_list = phns.split("_")
        lyric = "".join(phn_list)
        dur = float(dur)
        note = [st, st + dur, lyric, pitch, phns]
        st += dur
        notes.append(note)
        for phn in phn_list:
            labels.append(phn)
        pre_phn = labels[-1]

    phns_str = " ".join(labels)
    batch = {
        "score": (
            int(tempo),
            notes,
        ),
        "text": phns_str,
    }
    # print(batch)
    # return (fs, np.array([0.0])), "success!"

    # Infer
    device = "cpu"
    # device = "cuda" if torch.cuda.is_available() else "cpu"
    d = ModelDownloader()
    pretrain_downloaded = d.download_and_unpack(PRETRAIN_MODEL)
    svs = SingingGenerate(
        train_config = pretrain_downloaded["train_config"],
        model_file = pretrain_downloaded["model_file"],
        device = device
    )
    # sid = spks[spk]
    lid = langs[lang]
    spk_embed = np.load(singer_embeddings[spk])
    # output_dict = svs(batch, sids=np.array([sid]))
    output_dict = svs(batch, lids=np.array([lid]), spembs=spk_embed)
    wav_info = output_dict["wav"].cpu().numpy()
    return (fs, wav_info), "success!"


title = "Demo of Singing Voice Synthesis in Muskits-ESPnet"

description = """
<div style="font-size: 20px; ">
  <p>This is the demo page of our toolkit <b>Muskits-ESPnet: A Comprehensive Toolkit for Singing Voice Synthesis in New Paradigm</b>.</p>
  <p>Singing Voice Synthesis (SVS) takes a music score as input and generates singing vocal with the voice of a specific singer.\n
  Music score contains information about lyrics, as well as duration and pitch of each word in lyrics.</p>

  <h1>How to use:</h1>
  <ol>
    <li> <b>Choose language ID</b>: "zh" indicates lyrics input in Chinese, and "jp" indicates lyrics input in Japanese. </li>
    <li> <b>Input lyrics</b>:
        <ul>
            <li> Lyrics use Chinese characters when the language is 'zh' and hiragana when the language is 'jp'. </li>
            <li> Special characters such as 'AP' (breath), 'SP' (silence), and '-' (slur, only for 'zh') can also be used. </li>
            <li> Lyrics sequence should be separated by either a space (' ') or a newline ('\\n'), without the quotation marks. </li>
        </ul>
    </li>
    <li> <b>Input durations</b>: 
        <ul>
            <li> Length of duration sequence should <b>be same as lyric sequence</b>, with each duration corresponding to the respective lyric. </li>
            <li> Durations sequence should be separated by either a space (' ') or a newline ('\\n'), without the quotation marks. </li>
        </ul>
    </li>
    <li> <b>Input pitches</b>:
        <ul>
            <li> Length of pitch sequence should <b>be same as lyric sequence</b>, with each pitch corresponding to the respective lyric. </li>
            <li> Pitches sequence should be separated by either a space (' ') or a newline ('\\n'), without the quotation marks. </li>
        </ul>
    </li>
    <li> <b>Choose one singer</b> </li>
    <li> <b>Click submit button</b> </li>
  </ol>

  <h1>Notice:</h1>
  <ul>
    <li> Values outside this range may result in suboptimal generation quality! </li>
  </ul>
</div>
"""

article = """
<div style='margin:20px auto;'>

<p>References: <a href="https://arxiv.org/abs/2409.07226">Muskits-ESPnet paper</a> |
<a href="https://github.com/espnet/espnet">espnet GitHub</a> |
<a href="https://huggingface.co/espnet/mixdata_svs_visinger2_spkembed_lang_pretrained">pretrained model</a></p>

<pre>
@inproceedings{wu2024muskits,
  title = {{Muskits-ESPnet}: A Comprehensive Toolkit for Singing Voice Synthesis in New Paradigm},
  author = {Yuning Wu and Jiatong Shi and Yifeng Yu and Yuxun Tang and Tao Qian and Yueqian Lin and Jionghao Han and Xinyi Bai and Shinji Watanabe and Qin Jin},
  booktitle={Proceedings of the 32st ACM International Conference on Multimedia},
  year={2024},
}
</pre>

</div>
"""


# SP: silence, AP: aspirate.
examples = [
    ["zh", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "60 62 62 62 0 62 58 0\n58 58 0 58 58 63 0", "singer1 (male)"],
    ["zh", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "C4 D4 D4 D4 rest D4 A#3 rest\nA#3 A#3 rest A#3 A#3 D#4 rest", "singer1 (male)"],
    ["zh", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "C#4 D#4 D#4 D#4 rest D#4 B3 rest\nB3 B3 rest B3 B3 E4 rest", "singer1 (male)"],
    ["zh", "你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.11 0.33 0.29 0.13 0.15 0.48\n0.24 0.18 0.34 0.15 0.27 0.28 0.63 0.44", "63 63 63 63 0 63\n62 62 62 63 65 63 62 0", "singer1 (male)"],
    ["zh", "你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.23 0.66 0.58 0.27 0.3 0.97\n0.48 0.36 0.69 0.3 0.53 0.56 1.27 0.89", "63 63 63 63 0 63\n62 62 62 63 65 63 62 0", "singer1 (male)"],
    ["zh", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP\n你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34\n0.11 0.33 0.29 0.13 0.15 0.48\n0.24 0.18 0.34 0.15 0.27 0.28 0.63 0.44", "60 62 62 62 0 62 58 0\n58 58 0 58 58 63 0\n63 63 63 63 0 63\n62 62 62 63 65 63 62 0", "singer1 (male)"],
    ["zh", "修 炼 爱 情 的 心 酸 SP AP", "0.42 0.21 0.19 0.28 0.22 0.33 1.53 0.1 0.29", "68 70 68 66 63 68 68 0 0", "singer2 (female)"],
    ["zh", "学 会 放 好 以 前 的 渴 望 SP AP", "0.3 0.22 0.29 0.27 0.25 0.44 0.54 0.29 1.03 0.08 0.39", "68 70 68 66 61 68 68 65 66 0 0", "singer2 (female)"],
    ["zh", "SP 你 看 着 车 窗 - SP", " 0.41 0.96 0.7 0.64 1.12 1.14 1.04 0.29", "0 60 60 62 60 64 65 0", "singer3 (male)"],
    ["jp", "い じ ん さ ん に つ れ ら れ て", "0.6 0.3 0.3 0.3 0.3 0.6 0.6 0.3 0.3 0.6 0.23", "60 60 60 56 56 56 55 55 55 53 56", "singer8 (female)"],
    ["jp", "い じ ん さ ん に つ れ ら れ て", "0.6 0.3 0.3 0.3 0.3 0.6 0.6 0.3 0.3 0.6 0.23", "62 62 62 58 58 58 57 57 57 55 58", "singer8 (female)"],
    ["jp", "い じ ん さ ん に つ れ ら れ て", "1.2 0.6 0.6 0.6 0.6 1.2 1.2 0.6 0.6 1.2 0.45", "60 60 60 56 56 56 55 55 55 53 56", "singer8 (female)"],
    ["jp", "い じ ん さ ん に つ れ ら れ て", "0.3 0.15 0.15 0.15 0.15 0.3 0.3 0.15 0.15 0.3 0.11", "60 60 60 56 56 56 55 55 55 53 56", "singer8 (female)"],
    ["jp", "きっ と と べ ば そ ら ま で と ど く AP", "0.39 2.76 0.2 0.2 0.39 0.39 0.2 0.2 0.39 0.2 0.2 0.59 1.08", "64 71 68 69 71 71 69 68 66 68 69 68 0", "singer2 (female)"],
    ["jp", "じゃ の め で お む か え う れ し い な", "0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.65", "60 60 60 62 64 67 69 69 64 64 64 62 60", "singer10 (female)"],
    ["jp", "お と め わ ら い か ふぁ い や ら い か ん な い す ぶ ろ うぃ ん ぶ ろ うぃ ん い ん ざ うぃ ん", "0.15 0.15 0.15 0.15 0.3 0.15 0.3 0.15 0.15 0.3 0.07 0.07 0.15 0.15 0.15 0.15 0.15 0.15 0.45 0.07 0.07 0.07 0.38 0.07 0.07 0.15 0.15 0.3 0.15 0.15", "67 67 67 67 67 67 69 67 67 69 67 67 64 64 64 64 64 64 62 64 64 62 62 64 64 62 62 59 59 59", "singer9 (male)"],
]

app = gr.Interface(
    fn=gen_song,
    inputs=[
        gr.Radio(label="language", choices=["zh", "jp"], value="zh"),
        gr.Textbox(label="Lyrics"),
        gr.Textbox(label="Duration"),
        gr.Textbox(label="Pitch"),
        gr.Radio(
            label="Singer",
            choices=[
                "singer1 (male)",
                "singer2 (female)",
                "singer3 (male)",
                "singer4 (female)",
                "singer4 (male)", 
                "singer6 (female)",
                "singer7 (male)",
                "singer8 (female)",
                "singer9 (male)",
                "singer10 (female)",
            ],
            value="singer1 (male)",
        ),
    ],
    outputs=[
        gr.Audio(label="Generated Song", type="numpy"),
        gr.Textbox(label="Running Status"),
    ],
    title=title,
    description=description,
    article=article,
    examples=examples,
)

app.launch()