Spaces:
Sleeping
Sleeping
Commit
·
8516514
0
Parent(s):
Load model
Browse files- .gitattributes +1 -0
- __pycache__/inference.cpython-310.pyc +0 -0
- __pycache__/model.cpython-310.pyc +0 -0
- __pycache__/utils.cpython-310.pyc +0 -0
- app.py +41 -0
- finetune_roberta_qa.py +229 -0
- inference.py +104 -0
- model.py +399 -0
- requirements.txt +4 -0
- save_model/merges.txt +0 -0
- save_model/model.safetensors +3 -0
- save_model/special_tokens_map.json +51 -0
- save_model/tokenizer.json +0 -0
- save_model/tokenizer_config.json +60 -0
- save_model/training_args.bin +0 -0
- save_model/vocab.json +0 -0
- utils.py +220 -0
.gitattributes
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
__pycache__/inference.cpython-310.pyc
ADDED
Binary file (2.59 kB). View file
|
|
__pycache__/model.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
__pycache__/utils.cpython-310.pyc
ADDED
Binary file (5.29 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from flask_cors import CORS
|
3 |
+
|
4 |
+
from inference import InferenceModel
|
5 |
+
import traceback
|
6 |
+
|
7 |
+
|
8 |
+
app = Flask(__name__)
|
9 |
+
CORS(app)
|
10 |
+
|
11 |
+
try:
|
12 |
+
model = InferenceModel(path_to_weights="save_model/model.safetensors", huggingface_model=True)
|
13 |
+
except Exception as e:
|
14 |
+
print("❌ Lỗi khi load mô hình:")
|
15 |
+
traceback.print_exc()
|
16 |
+
model = None
|
17 |
+
|
18 |
+
@app.route('/pred', methods=['POST'])
|
19 |
+
def prediction():
|
20 |
+
payload = request.get_json()
|
21 |
+
|
22 |
+
# Lấy dữ liệu từ request
|
23 |
+
context = payload.get('context', '')
|
24 |
+
question = payload.get('question', '')
|
25 |
+
|
26 |
+
# # In ra terminal
|
27 |
+
# print("\n===== Nhận yêu cầu mới =====")
|
28 |
+
# print(f"Context: {context}")
|
29 |
+
# print(f"Question: {question}")
|
30 |
+
|
31 |
+
# Gọi mô hình
|
32 |
+
prediction = model.inference_model(question, context)
|
33 |
+
answer = prediction["answer"]
|
34 |
+
|
35 |
+
return jsonify({"answer": answer}), 200
|
36 |
+
|
37 |
+
if __name__ == '__main__':
|
38 |
+
app.run(port=5000, debug=True)
|
39 |
+
|
40 |
+
|
41 |
+
# Chayj server
|
finetune_roberta_qa.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
os.environ["WANDB_PROJECT"] = "RoBERTa_QA_Finetune"
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
from datasets import load_dataset
|
7 |
+
from transformers import (
|
8 |
+
RobertaTokenizerFast,
|
9 |
+
DefaultDataCollator,
|
10 |
+
TrainingArguments,
|
11 |
+
Trainer,
|
12 |
+
)
|
13 |
+
|
14 |
+
import torch
|
15 |
+
|
16 |
+
from utils import RobertaConfig, ExtractiveQAPreProcesing
|
17 |
+
from model import RobertaForQuestionAnswering
|
18 |
+
|
19 |
+
import warnings
|
20 |
+
warnings.filterwarnings("ignore")
|
21 |
+
|
22 |
+
def parse_arguments():
|
23 |
+
|
24 |
+
parser = argparse.ArgumentParser(description="Wav2Vec2 Finetuning Arguments on Librispeech")
|
25 |
+
|
26 |
+
### Experiment Logging ###
|
27 |
+
parser.add_argument(
|
28 |
+
"--experiment_name",
|
29 |
+
required=True,
|
30 |
+
type=str
|
31 |
+
)
|
32 |
+
|
33 |
+
parser.add_argument(
|
34 |
+
"--working_directory",
|
35 |
+
required=True,
|
36 |
+
type=str
|
37 |
+
)
|
38 |
+
|
39 |
+
parser.add_argument(
|
40 |
+
"--path_to_cache_dir",
|
41 |
+
help="Path to huggingface cache if different from default",
|
42 |
+
default=None,
|
43 |
+
type=str
|
44 |
+
)
|
45 |
+
|
46 |
+
parser.add_argument(
|
47 |
+
"--num_train_epochs",
|
48 |
+
help="Number of epochs you want to train for",
|
49 |
+
default=3,
|
50 |
+
type=int
|
51 |
+
)
|
52 |
+
|
53 |
+
parser.add_argument(
|
54 |
+
"--save_steps",
|
55 |
+
help="After how many steps do you want to log a checkpoint",
|
56 |
+
default=500,
|
57 |
+
type=int
|
58 |
+
)
|
59 |
+
|
60 |
+
parser.add_argument(
|
61 |
+
"--eval_steps",
|
62 |
+
help="After how many steps do you want to evaluate on eval data",
|
63 |
+
default=500,
|
64 |
+
type=int
|
65 |
+
)
|
66 |
+
|
67 |
+
parser.add_argument(
|
68 |
+
"--logging_steps",
|
69 |
+
help="After how many steps do you want to log to Weights and Biases (if installed)",
|
70 |
+
default=500,
|
71 |
+
type=int
|
72 |
+
)
|
73 |
+
|
74 |
+
parser.add_argument(
|
75 |
+
"--warmup_steps",
|
76 |
+
help="Number of learning rate warmup steps",
|
77 |
+
default=100,
|
78 |
+
type=int
|
79 |
+
)
|
80 |
+
|
81 |
+
### Training Arguments ###
|
82 |
+
|
83 |
+
parser.add_argument(
|
84 |
+
"--per_device_batch_size",
|
85 |
+
help="Batch size for every gradient accumulation steps",
|
86 |
+
default=2,
|
87 |
+
type=int
|
88 |
+
)
|
89 |
+
|
90 |
+
parser.add_argument(
|
91 |
+
"--gradient_accumulation_steps",
|
92 |
+
help="Number of gradient accumulation steps you want",
|
93 |
+
default=2,
|
94 |
+
type=int
|
95 |
+
)
|
96 |
+
|
97 |
+
parser.add_argument(
|
98 |
+
"--learning_rate",
|
99 |
+
help="Max learning rate that we warmup to",
|
100 |
+
default=2e-5,
|
101 |
+
type=float
|
102 |
+
)
|
103 |
+
|
104 |
+
parser.add_argument(
|
105 |
+
"--weight_decay",
|
106 |
+
help="Weight decay applied to model parameters during training",
|
107 |
+
default=0.01,
|
108 |
+
type=float
|
109 |
+
)
|
110 |
+
|
111 |
+
parser.add_argument(
|
112 |
+
"--save_total_limit",
|
113 |
+
help="Max number of checkpoints to save",
|
114 |
+
default=4,
|
115 |
+
type=int
|
116 |
+
)
|
117 |
+
|
118 |
+
### Backbone Arguments ###
|
119 |
+
parser.add_argument(
|
120 |
+
"--huggingface_model_name",
|
121 |
+
help="Name for pretrained RoBERTa backbone and Tokenizer",
|
122 |
+
default="deepset/roberta-base-squad2",
|
123 |
+
type=str
|
124 |
+
)
|
125 |
+
|
126 |
+
parser.add_argument(
|
127 |
+
"--path_to_pretrained_backbone",
|
128 |
+
help="Path to model weights stored from our pretraining to initialize the backbone",
|
129 |
+
default=None,
|
130 |
+
type=str
|
131 |
+
)
|
132 |
+
|
133 |
+
parser.add_argument(
|
134 |
+
"--pretrained_backbone",
|
135 |
+
help="Do you want want a `pretrained` backbone that we made (need to provide path_to_pretrained_backbone), \
|
136 |
+
`pretrained_huggingface` backbone (then need huggingface_model_name), or `random` initialized backbone",
|
137 |
+
choices=("pretrained", "pretrained_huggingface", "random"),
|
138 |
+
type=str
|
139 |
+
)
|
140 |
+
parser.add_argument('--resume_from_checkpoint', type=str, default=None)
|
141 |
+
parser.add_argument('--model_name_or_path', type=str, default="roberta-base")
|
142 |
+
|
143 |
+
args = parser.parse_args()
|
144 |
+
|
145 |
+
return args
|
146 |
+
|
147 |
+
|
148 |
+
### Load Arguments ###
|
149 |
+
args = parse_arguments()
|
150 |
+
|
151 |
+
def load_tokenizer(model_name):
|
152 |
+
try:
|
153 |
+
return RobertaTokenizerFast.from_pretrained(model_name)
|
154 |
+
except Exception as e:
|
155 |
+
logging.error(f"Failed to load tokenizer: {e}")
|
156 |
+
raise
|
157 |
+
|
158 |
+
def load_model(config):
|
159 |
+
try:
|
160 |
+
return RobertaForQuestionAnswering(config)
|
161 |
+
except Exception as e:
|
162 |
+
logging.error(f"Failed to load model: {e}")
|
163 |
+
raise
|
164 |
+
logging.basicConfig(level=logging.INFO)
|
165 |
+
logging.info("----------Loading dataset and tokenizer----------")
|
166 |
+
|
167 |
+
### Load Tokenizer ###
|
168 |
+
tokenizer = RobertaTokenizerFast.from_pretrained(args.huggingface_model_name)
|
169 |
+
|
170 |
+
### Load Config ###
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
dataset = load_dataset("stanfordnlp/coqa")
|
175 |
+
processor = ExtractiveQAPreProcesing()
|
176 |
+
tokenized_squad = dataset.map(processor, batched=True, remove_columns=dataset["train"].column_names)
|
177 |
+
|
178 |
+
# print(tokenized_squad.column_names)
|
179 |
+
### Load Model ###
|
180 |
+
if args.resume_from_checkpoint is not None:
|
181 |
+
config = RobertaConfig(pretrained_backbone=args.pretrained_backbone,
|
182 |
+
path_to_pretrained_weights=args.path_to_pretrained_backbone)
|
183 |
+
model = RobertaForQuestionAnswering(config)
|
184 |
+
model.load_state_dict(torch.load(f"{args.resume_from_checkpoint}/training_args.bin", map_location="cpu"))
|
185 |
+
else:
|
186 |
+
config = RobertaConfig(pretrained_backbone=args.pretrained_backbone,
|
187 |
+
path_to_pretrained_weights=args.path_to_pretrained_backbone)
|
188 |
+
model = RobertaForQuestionAnswering(config)
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
### Load Default Collator, We padded to longest length so no padding necessary ##
|
193 |
+
|
194 |
+
data_collator = DefaultDataCollator()
|
195 |
+
|
196 |
+
### Define Training Arguments ###
|
197 |
+
training_args = TrainingArguments(
|
198 |
+
output_dir=os.path.join(args.working_directory, args.experiment_name),
|
199 |
+
per_device_train_batch_size=args.per_device_batch_size,
|
200 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
201 |
+
# evaluation_strategy="steps",
|
202 |
+
num_train_epochs=args.num_train_epochs,
|
203 |
+
bf16=True,
|
204 |
+
save_steps=args.save_steps,
|
205 |
+
eval_steps=args.eval_steps,
|
206 |
+
logging_steps=args.logging_steps,
|
207 |
+
learning_rate=args.learning_rate,
|
208 |
+
weight_decay=args.weight_decay,
|
209 |
+
warmup_steps=args.warmup_steps,
|
210 |
+
save_total_limit=args.save_total_limit,
|
211 |
+
run_name=args.experiment_name,
|
212 |
+
|
213 |
+
)
|
214 |
+
|
215 |
+
trainer = Trainer(
|
216 |
+
model=model,
|
217 |
+
args=training_args,
|
218 |
+
train_dataset=tokenized_squad["train"],
|
219 |
+
eval_dataset=tokenized_squad["validation"],
|
220 |
+
tokenizer=tokenizer,
|
221 |
+
data_collator=data_collator,
|
222 |
+
)
|
223 |
+
|
224 |
+
### TRAIN MODEL !!! ###
|
225 |
+
# trainer.train()
|
226 |
+
trainer.train(resume_from_checkpoint="model/RoBERTa/finetune_qa_hf_roberta_backbone/checkpoint-54324")
|
227 |
+
|
228 |
+
### Save Final Model ###
|
229 |
+
trainer.save_model("/home/tangsan/AllNlpProject/CoQAChat/model/RoBERTa/save_model")
|
inference.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import RobertaTokenizerFast
|
3 |
+
from utils import RobertaConfig
|
4 |
+
from model import RobertaForQuestionAnswering
|
5 |
+
from safetensors.torch import load_file
|
6 |
+
from datasets import load_dataset
|
7 |
+
from pprintpp import pprint
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
class InferenceModel:
|
12 |
+
"""
|
13 |
+
Quick inference function that works with the models we have trained!
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, path_to_weights, huggingface_model=True):
|
17 |
+
### Init Config with either Huggingface Backbone or our own ###
|
18 |
+
self.config = RobertaConfig(pretrained_backbone="pretrained_huggingface" if huggingface_model else "random")
|
19 |
+
|
20 |
+
### Load Tokenizer ###
|
21 |
+
self.tokenizer = RobertaTokenizerFast.from_pretrained(self.config.hf_model_name)
|
22 |
+
|
23 |
+
### Load Model ###
|
24 |
+
self.model = RobertaForQuestionAnswering(self.config)
|
25 |
+
|
26 |
+
weights = load_file(path_to_weights)
|
27 |
+
self.model.load_state_dict(weights)
|
28 |
+
|
29 |
+
self.model.eval()
|
30 |
+
|
31 |
+
def inference_model(self,
|
32 |
+
question,
|
33 |
+
context):
|
34 |
+
### Tokenize Text
|
35 |
+
inputs = self.tokenizer(text=question,
|
36 |
+
text_pair=context,
|
37 |
+
max_length=self.config.context_length,
|
38 |
+
truncation="only_second",
|
39 |
+
return_tensors="pt")
|
40 |
+
pass
|
41 |
+
### Pass through Model ####
|
42 |
+
with torch.no_grad():
|
43 |
+
start_token_logits, end_token_logits = self.model(**inputs)
|
44 |
+
|
45 |
+
### Grab Start and End Token Idx ###
|
46 |
+
start_token_idx = start_token_logits.squeeze().argmax().item()
|
47 |
+
end_token_idx = end_token_logits.squeeze().argmax().item()
|
48 |
+
|
49 |
+
|
50 |
+
### Slice Tokens and then Decode with Tokenizer (+1 because slice is not right inclusive) ###
|
51 |
+
tokens = inputs["input_ids"].squeeze()[start_token_idx:end_token_idx + 1]
|
52 |
+
answer = self.tokenizer.decode(tokens, skip_special_tokens=True).strip()
|
53 |
+
|
54 |
+
prediction = {"start_token_idx": start_token_idx,
|
55 |
+
"end_token_idx": end_token_idx,
|
56 |
+
"answer": answer}
|
57 |
+
|
58 |
+
return prediction
|
59 |
+
|
60 |
+
|
61 |
+
if __name__ == "__main__":
|
62 |
+
|
63 |
+
dataset = load_dataset("stanfordnlp/coqa")
|
64 |
+
|
65 |
+
data = dataset["validation"][2]
|
66 |
+
# data = dataset["train"][0]
|
67 |
+
# print("answer:", data["answers"])
|
68 |
+
### Sample Text ###
|
69 |
+
context = data["story"]
|
70 |
+
print("context:", context)
|
71 |
+
question = data["questions"][4]
|
72 |
+
|
73 |
+
tokenizer = RobertaTokenizerFast.from_pretrained("deepset/roberta-base-squad2")
|
74 |
+
|
75 |
+
encoded = tokenizer(
|
76 |
+
question,
|
77 |
+
context,
|
78 |
+
max_length=512,
|
79 |
+
truncation="only_second",
|
80 |
+
padding="max_length",
|
81 |
+
return_offsets_mapping=True,
|
82 |
+
return_tensors="pt"
|
83 |
+
)
|
84 |
+
offset_mapping = encoded["offset_mapping"][0].tolist() # convert to list of tuples
|
85 |
+
input_ids = encoded["input_ids"][0]
|
86 |
+
|
87 |
+
|
88 |
+
### Inference Model ###
|
89 |
+
path_to_weights = "model/RoBERTa/save_model/model.safetensors"
|
90 |
+
inferencer = InferenceModel(path_to_weights=path_to_weights, huggingface_model=True)
|
91 |
+
prediction = inferencer.inference_model(question, context)
|
92 |
+
print("\n----------------------------------")
|
93 |
+
print("results:", prediction)
|
94 |
+
|
95 |
+
start_token_idx = prediction["start_token_idx"]
|
96 |
+
end_token_idx = prediction["end_token_idx"]
|
97 |
+
|
98 |
+
start_char = offset_mapping[start_token_idx][0]
|
99 |
+
end_char = offset_mapping[end_token_idx][1]
|
100 |
+
|
101 |
+
print("Question:", question)
|
102 |
+
print("Recovered answer:", context[start_char:end_char])
|
103 |
+
|
104 |
+
# test model
|
model.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from safetensors.torch import load_file
|
6 |
+
from transformers import RobertaModel as HFRobertaModel
|
7 |
+
|
8 |
+
from utils import RobertaConfig
|
9 |
+
|
10 |
+
|
11 |
+
from pprintpp import pprint
|
12 |
+
|
13 |
+
class RobertaEmbeddings(nn.Module):
|
14 |
+
"""
|
15 |
+
Converts our tokens to embedding vectors and then adds positional embeddings (and potentially token type embeddings)
|
16 |
+
to our data! We wont need to token type embeddings until we do our QA finetuning.
|
17 |
+
"""
|
18 |
+
|
19 |
+
def __init__(self, config):
|
20 |
+
super(RobertaEmbeddings, self).__init__()
|
21 |
+
|
22 |
+
### Embeddings for Tokens ###
|
23 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_dimension, padding_idx=config.pad_token)
|
24 |
+
|
25 |
+
### Positional Embeddings ###
|
26 |
+
self.position_embeddings = nn.Embedding(config.context_length, config.embedding_dimension)
|
27 |
+
|
28 |
+
### Layernorm and Dropout ###
|
29 |
+
self.layernorm = nn.LayerNorm(config.embedding_dimension, eps=config.layer_norm_eps)
|
30 |
+
self.dropout = nn.Dropout(config.hidden_dropout_p)
|
31 |
+
|
32 |
+
def forward(self, input_ids):
|
33 |
+
batch_size, seq_length = input_ids.shape
|
34 |
+
|
35 |
+
### Convert Tokens to Embeddings ###
|
36 |
+
x = self.word_embeddings(input_ids)
|
37 |
+
|
38 |
+
### Add Positional Information ###
|
39 |
+
avail_idx = torch.arange(0, seq_length, dtype=torch.long, device=input_ids.device)
|
40 |
+
pos_embed = self.position_embeddings(avail_idx)
|
41 |
+
x = x + pos_embed
|
42 |
+
|
43 |
+
x = self.layernorm(x)
|
44 |
+
x = self.dropout(x)
|
45 |
+
|
46 |
+
return x
|
47 |
+
|
48 |
+
|
49 |
+
class RobertaAttention(nn.Module):
|
50 |
+
"""
|
51 |
+
Regular Self-Attention but in this case we utilize flash_attention
|
52 |
+
incorporated in the F.scaled_dot_product_attention to speed up our training.
|
53 |
+
"""
|
54 |
+
|
55 |
+
def __init__(self, config):
|
56 |
+
super(RobertaAttention, self).__init__()
|
57 |
+
|
58 |
+
### Store Config ###
|
59 |
+
self.config = config
|
60 |
+
|
61 |
+
### Sanity Checks ###
|
62 |
+
assert config.embedding_dimension % config.num_attention_heads == 0, "Double check embedding dim divisible by number of heads"
|
63 |
+
|
64 |
+
### Attention Head Dim ###
|
65 |
+
self.head_dim = config.embedding_dimension // config.num_attention_heads
|
66 |
+
|
67 |
+
### Attention Projections ###
|
68 |
+
self.q_proj = nn.Linear(config.embedding_dimension, config.embedding_dimension)
|
69 |
+
self.k_proj = nn.Linear(config.embedding_dimension, config.embedding_dimension)
|
70 |
+
self.v_proj = nn.Linear(config.embedding_dimension, config.embedding_dimension)
|
71 |
+
|
72 |
+
### Post Attention Projection ###
|
73 |
+
self.out_proj = nn.Linear(config.embedding_dimension, config.embedding_dimension)
|
74 |
+
|
75 |
+
def forward(self, x, attention_mask=None):
|
76 |
+
### Store Shape ###
|
77 |
+
batch, seq_len, embed_dim = x.shape
|
78 |
+
|
79 |
+
### Compute Attention with Flash Attention ###
|
80 |
+
q = self.q_proj(x).reshape(batch, seq_len, self.config.num_attention_heads, self.head_dim).transpose(1,
|
81 |
+
2).contiguous()
|
82 |
+
k = self.k_proj(x).reshape(batch, seq_len, self.config.num_attention_heads, self.head_dim).transpose(1,
|
83 |
+
2).contiguous()
|
84 |
+
v = self.v_proj(x).reshape(batch, seq_len, self.config.num_attention_heads, self.head_dim).transpose(1,
|
85 |
+
2).contiguous()
|
86 |
+
|
87 |
+
### Compute Attention (Attention Mask has shape Batch x Sequence len x Sequence len) ###
|
88 |
+
attention_out = F.scaled_dot_product_attention(q, k, v,
|
89 |
+
attn_mask=attention_mask,
|
90 |
+
dropout_p=self.config.attention_dropout_p if self.training else 0.0)
|
91 |
+
|
92 |
+
### Compute Output Projection ###
|
93 |
+
attention_out = attention_out.transpose(1, 2).flatten(2)
|
94 |
+
attention_out = self.out_proj(attention_out)
|
95 |
+
|
96 |
+
return attention_out
|
97 |
+
|
98 |
+
|
99 |
+
class RobertaFeedForward(nn.Module):
|
100 |
+
"""
|
101 |
+
Regular MLP module after our attention computation.
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __init__(self, config):
|
105 |
+
super(RobertaFeedForward, self).__init__()
|
106 |
+
|
107 |
+
hidden_size = config.embedding_dimension * config.mlp_ratio
|
108 |
+
self.intermediate_dense = nn.Linear(config.embedding_dimension, hidden_size)
|
109 |
+
self.activation = nn.GELU()
|
110 |
+
self.intermediate_dropout = nn.Dropout(config.hidden_dropout_p)
|
111 |
+
|
112 |
+
self.output_dense = nn.Linear(hidden_size, config.embedding_dimension)
|
113 |
+
self.output_dropout = nn.Dropout(config.hidden_dropout_p)
|
114 |
+
|
115 |
+
def forward(self, x):
|
116 |
+
x = self.intermediate_dense(x)
|
117 |
+
x = self.activation(x)
|
118 |
+
x = self.intermediate_dropout(x)
|
119 |
+
|
120 |
+
x = self.output_dense(x)
|
121 |
+
x = self.output_dropout(x)
|
122 |
+
return x
|
123 |
+
|
124 |
+
|
125 |
+
class RobertaEncoderLayer(nn.Module):
|
126 |
+
"""
|
127 |
+
Single transformer block stacking together Attention and our FeedForward
|
128 |
+
layers, with normalization and residual connections.
|
129 |
+
"""
|
130 |
+
|
131 |
+
def __init__(self, config):
|
132 |
+
super(RobertaEncoderLayer, self).__init__()
|
133 |
+
|
134 |
+
self.attention = RobertaAttention(config)
|
135 |
+
self.dropout = nn.Dropout(config.hidden_dropout_p)
|
136 |
+
self.layer_norm = nn.LayerNorm(config.embedding_dimension, eps=config.layer_norm_eps)
|
137 |
+
self.feed_forward = RobertaFeedForward(config)
|
138 |
+
self.final_layer_norm = nn.LayerNorm(config.embedding_dimension, eps=config.layer_norm_eps)
|
139 |
+
|
140 |
+
def forward(self, x, attention_mask=None):
|
141 |
+
x = x + self.dropout(self.attention(x, attention_mask=attention_mask))
|
142 |
+
x = self.layer_norm(x)
|
143 |
+
|
144 |
+
x = x + self.feed_forward(x)
|
145 |
+
x = self.final_layer_norm(x)
|
146 |
+
|
147 |
+
return x
|
148 |
+
|
149 |
+
|
150 |
+
class RobertaEncoder(nn.Module):
|
151 |
+
"""
|
152 |
+
This will be the stack of all of our transformer blocks
|
153 |
+
"""
|
154 |
+
|
155 |
+
def __init__(self, config):
|
156 |
+
super(RobertaEncoder, self).__init__()
|
157 |
+
|
158 |
+
self.config = config
|
159 |
+
|
160 |
+
### Transformer Layers ###
|
161 |
+
self.layers = nn.ModuleList(
|
162 |
+
[
|
163 |
+
RobertaEncoderLayer(config) for _ in range(config.num_transformer_blocks)
|
164 |
+
]
|
165 |
+
)
|
166 |
+
|
167 |
+
def forward(
|
168 |
+
self,
|
169 |
+
x,
|
170 |
+
attention_mask=None,
|
171 |
+
):
|
172 |
+
|
173 |
+
batch_size, seq_len, embed_dim = x.shape
|
174 |
+
|
175 |
+
if attention_mask is not None:
|
176 |
+
### Make Sure Attention Mask is a Boolean Tensor ###
|
177 |
+
attention_mask = attention_mask.bool()
|
178 |
+
|
179 |
+
### Now our Attention Mask is in (Batch x Sequence Length) where we have 0 for tokens we don't want to attend to ###
|
180 |
+
### F.scaled_dot_product_attention expects a mask of the shape (Batch x ..., x Seq_len x Seq_len) ###
|
181 |
+
### the "..." in this case is any extra dimensions (such as heads of attention). lets expand our mask to (Batch x 1 x Seq_len x Seq_len) ###
|
182 |
+
### The 1 in this case refers to the number of heads of attention we want, so it is a dummy index to broadcast over ###
|
183 |
+
### In each (Seq_len x Seq_len) matrix for every batch, we want False for all columns corresponding to padding tokens ###
|
184 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1).repeat(1, 1, seq_len, 1)
|
185 |
+
|
186 |
+
for layer in self.layers:
|
187 |
+
x = layer(x, attention_mask=attention_mask)
|
188 |
+
|
189 |
+
return x
|
190 |
+
|
191 |
+
|
192 |
+
class RobertaMLMHead(nn.Module):
|
193 |
+
"""
|
194 |
+
The Masked Language model head is a stack of two linear layers with an activation in between!
|
195 |
+
"""
|
196 |
+
|
197 |
+
def __init__(self, config):
|
198 |
+
super(RobertaMLMHead, self).__init__()
|
199 |
+
|
200 |
+
self.config = config
|
201 |
+
|
202 |
+
### Projection Layer for Hidden States ###
|
203 |
+
self.dense = nn.Linear(config.embedding_dimension, config.embedding_dimension)
|
204 |
+
self.layer_norm = nn.LayerNorm(config.embedding_dimension, eps=config.layer_norm_eps)
|
205 |
+
self.activation = nn.GELU()
|
206 |
+
|
207 |
+
### Mapping to Vocabulary ###
|
208 |
+
self.decoder = nn.Linear(config.embedding_dimension, config.vocab_size)
|
209 |
+
|
210 |
+
def forward(self, inputs):
|
211 |
+
### Pass through Projection/Activation/Norm ###
|
212 |
+
x = self.dense(inputs)
|
213 |
+
x = self.activation(x)
|
214 |
+
x = self.layer_norm(x)
|
215 |
+
|
216 |
+
### Prediction of Masked Tokens ###
|
217 |
+
x = self.decoder(x)
|
218 |
+
|
219 |
+
return x
|
220 |
+
|
221 |
+
|
222 |
+
class RobertaModel(nn.Module):
|
223 |
+
"""
|
224 |
+
Backbone of our model, has to be pretrained via MLM on a ton of data!
|
225 |
+
"""
|
226 |
+
|
227 |
+
def __init__(self, config):
|
228 |
+
super(RobertaModel, self).__init__()
|
229 |
+
|
230 |
+
self.config = config
|
231 |
+
|
232 |
+
### Define all Parts of the Model ###
|
233 |
+
self.embeddings = RobertaEmbeddings(config)
|
234 |
+
self.encoder = RobertaEncoder(config)
|
235 |
+
|
236 |
+
def forward(self, input_ids, attention_mask=None):
|
237 |
+
embeddings = self.embeddings(input_ids)
|
238 |
+
output = self.encoder(embeddings, attention_mask)
|
239 |
+
|
240 |
+
return output
|
241 |
+
|
242 |
+
|
243 |
+
class RobertaForMaskedLM(nn.Module):
|
244 |
+
"""
|
245 |
+
This model will perform the masked language modeling task.
|
246 |
+
"""
|
247 |
+
|
248 |
+
def __init__(self, config):
|
249 |
+
super(RobertaForMaskedLM, self).__init__()
|
250 |
+
|
251 |
+
self.config = config
|
252 |
+
|
253 |
+
### Define Model and MLM Head ###
|
254 |
+
self.roberta = RobertaModel(config)
|
255 |
+
self.mlm_head = RobertaMLMHead(config)
|
256 |
+
|
257 |
+
self.apply(_init_weights_)
|
258 |
+
|
259 |
+
def forward(self,
|
260 |
+
input_ids,
|
261 |
+
attention_mask=None,
|
262 |
+
labels=None):
|
263 |
+
|
264 |
+
### Pass data through model ###
|
265 |
+
hidden_states = self.roberta(input_ids,
|
266 |
+
attention_mask)
|
267 |
+
|
268 |
+
preds = self.mlm_head(hidden_states)
|
269 |
+
|
270 |
+
### Compute Loss if Labels are Available ###
|
271 |
+
loss = None
|
272 |
+
if labels is not None:
|
273 |
+
|
274 |
+
### Flatten Logits to (B*S x N) and Labels to (B*S) ###
|
275 |
+
preds = preds.flatten(end_dim=1)
|
276 |
+
labels = labels.flatten()
|
277 |
+
|
278 |
+
loss = F.cross_entropy(preds, labels)
|
279 |
+
|
280 |
+
return hidden_states, preds, loss
|
281 |
+
|
282 |
+
else:
|
283 |
+
return hidden_states, preds
|
284 |
+
|
285 |
+
|
286 |
+
|
287 |
+
|
288 |
+
class RobertaForQuestionAnswering(nn.Module):
|
289 |
+
def __init__(self, config):
|
290 |
+
super().__init__()
|
291 |
+
self.config = config
|
292 |
+
|
293 |
+
self.load_backbone()
|
294 |
+
self.qa_head = nn.Linear(config.embedding_dimension, 2)
|
295 |
+
|
296 |
+
|
297 |
+
def load_backbone(self):
|
298 |
+
if self.config.pretrained_backbone == "pretrained_huggingface":
|
299 |
+
print("Loading Huggingface RoBERTa Model")
|
300 |
+
self.roberta = HFRobertaModel.from_pretrained(self.config.hf_model_name)
|
301 |
+
else:
|
302 |
+
self.roberta = RobertaModel(self.config)
|
303 |
+
if self.config.pretrained_backbone == "pretrained":
|
304 |
+
# state_dict = load_file(self.config.path_to_pretrained_weights)
|
305 |
+
# print(self.config.path_to_pretrained_weights)
|
306 |
+
if self.config.path_to_pretrained_weights is None:
|
307 |
+
# state_dict = HFRobertaModel.from_pretrained(RobertaConfig.hf_model_name).state_dict()
|
308 |
+
raise Exception(
|
309 |
+
"Provide the argument `path_to_pretrained_weights` in the config, else we cant load them!")
|
310 |
+
else:
|
311 |
+
if not os.path.isfile(self.config.path_to_pretrained_weights):
|
312 |
+
raise Exception(
|
313 |
+
f"Provided path to safetensors weights {self.config.path_to_pretrained_weights} is invalid!")
|
314 |
+
print(f"Loading RobertaModel Backbone from {self.config.path_to_pretrained_weights}")
|
315 |
+
|
316 |
+
state_dict = load_file(self.config.path_to_pretrained_weights)
|
317 |
+
|
318 |
+
# Filter and rename keys
|
319 |
+
backbone_keys = {}
|
320 |
+
for key in state_dict.keys():
|
321 |
+
if "roberta" in key:
|
322 |
+
new_key = key.replace("roberta.", "")
|
323 |
+
|
324 |
+
backbone_keys[new_key] = state_dict[key]
|
325 |
+
else:
|
326 |
+
continue
|
327 |
+
|
328 |
+
self.roberta.load_state_dict(backbone_keys)
|
329 |
+
|
330 |
+
def forward(self,
|
331 |
+
input_ids,
|
332 |
+
attention_mask=None,
|
333 |
+
start_positions=None,
|
334 |
+
end_positions=None):
|
335 |
+
|
336 |
+
if self.config.pretrained_backbone == "pretrained_huggingface":
|
337 |
+
output = self.roberta(input_ids, attention_mask=attention_mask).last_hidden_state
|
338 |
+
|
339 |
+
else:
|
340 |
+
output = self.roberta(input_ids, attention_mask=attention_mask)
|
341 |
+
|
342 |
+
logit = self.qa_head(output)
|
343 |
+
#
|
344 |
+
start_logits, end_logits = logit.split(1, dim=-1)
|
345 |
+
start_logits = start_logits.squeeze(-1)
|
346 |
+
end_logits = end_logits.squeeze(-1)
|
347 |
+
|
348 |
+
|
349 |
+
if start_positions is not None and end_positions is not None:
|
350 |
+
|
351 |
+
#
|
352 |
+
if len(start_positions.size()) >1:
|
353 |
+
start_positions = start_positions.squeeze(-1)
|
354 |
+
if len(end_positions.size()) > 1:
|
355 |
+
end_positions = end_positions.squeeze(-1)
|
356 |
+
|
357 |
+
|
358 |
+
ignored_index = start_logits.size(1)
|
359 |
+
|
360 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
361 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
362 |
+
|
363 |
+
start_loss = F.cross_entropy(start_logits, start_positions, ignore_index=ignored_index)
|
364 |
+
end_loss = F.cross_entropy(end_logits, end_positions, ignore_index=ignored_index)
|
365 |
+
|
366 |
+
total_loss = (start_loss + end_loss) / 2
|
367 |
+
|
368 |
+
return total_loss, start_logits, end_logits
|
369 |
+
return start_logits, end_logits
|
370 |
+
|
371 |
+
|
372 |
+
def _init_weights_(module):
|
373 |
+
"""
|
374 |
+
Simple weight intialization taken directly from the huggingface
|
375 |
+
`modeling_roberta.py` implementation!
|
376 |
+
"""
|
377 |
+
if isinstance(module, nn.Linear):
|
378 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
379 |
+
if module.bias is not None:
|
380 |
+
module.bias.data.zero_()
|
381 |
+
elif isinstance(module, nn.Embedding):
|
382 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
383 |
+
if module.padding_idx is not None:
|
384 |
+
module.weight.data[module.padding_idx].zero_()
|
385 |
+
elif isinstance(module, nn.LayerNorm):
|
386 |
+
module.bias.data.zero_()
|
387 |
+
module.weight.data.fill_(1.0)
|
388 |
+
|
389 |
+
|
390 |
+
if __name__ == "__main__":
|
391 |
+
|
392 |
+
config = RobertaConfig(pretrained_backbone = "pretrained",
|
393 |
+
path_to_pretrained_weights="/home/tangsan/AllNlpProject/CoQAChat/model/RoBERTa/finetune_qa_hf_roberta_backbone/checkpoint-27162/model.safetensors")
|
394 |
+
model = RobertaForQuestionAnswering(config=config)
|
395 |
+
|
396 |
+
rand= torch.randint(0,100,size=(4,8))
|
397 |
+
start_positions=torch.tensor([1,2,3,4])
|
398 |
+
end_positions=torch.tensor([5,6,7,8])
|
399 |
+
model(rand, start_positions=start_positions, end_positions=end_positions)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
transformers
|
4 |
+
torch
|
save_model/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
save_model/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf41fc1b853a2a0fc06599fa407a82f96d6aa4e2a6650347d07abc09defccd30
|
3 |
+
size 498612792
|
save_model/special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
save_model/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
save_model/tokenizer_config.json
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"50264": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": true,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": false,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "</s>",
|
50 |
+
"errors": "replace",
|
51 |
+
"extra_special_tokens": {},
|
52 |
+
"full_tokenizer_file": null,
|
53 |
+
"mask_token": "<mask>",
|
54 |
+
"model_max_length": 512,
|
55 |
+
"pad_token": "<pad>",
|
56 |
+
"sep_token": "</s>",
|
57 |
+
"tokenizer_class": "RobertaTokenizer",
|
58 |
+
"trim_offsets": true,
|
59 |
+
"unk_token": "<unk>"
|
60 |
+
}
|
save_model/training_args.bin
ADDED
Binary file (5.78 kB). View file
|
|
save_model/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
utils.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import random
|
3 |
+
from typing import Literal
|
4 |
+
print("CUDA available:", torch.cuda.is_available())
|
5 |
+
print("CUDA device count:", torch.cuda.device_count())
|
6 |
+
if torch.cuda.is_available():
|
7 |
+
print("GPU name:", torch.cuda.get_device_name(0))
|
8 |
+
|
9 |
+
from datasets.features.video import Example
|
10 |
+
from transformers import RobertaTokenizerFast, PretrainedConfig
|
11 |
+
from dataclasses import dataclass, asdict
|
12 |
+
|
13 |
+
from datasets import load_dataset
|
14 |
+
from pprintpp import pprint
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class RobertaConfig(PretrainedConfig):
|
18 |
+
### Tokenizer Config
|
19 |
+
vocab_size: int = 50265
|
20 |
+
start_token: int = 0
|
21 |
+
end_token: int = 2
|
22 |
+
pad_token: int = 2
|
23 |
+
mask_token: int = 50264
|
24 |
+
|
25 |
+
### Transformer Config ###
|
26 |
+
embedding_dimension: int = 768
|
27 |
+
num_transformer_blocks: int = 12
|
28 |
+
num_attention_heads: int = 12
|
29 |
+
mlp_ratio: int = 4
|
30 |
+
layer_norm_eps: float = 1e-6
|
31 |
+
hidden_dropout_p: float = 0.1
|
32 |
+
attention_dropout_p: float = 0.1
|
33 |
+
context_length: int = 512
|
34 |
+
|
35 |
+
### Masking Config ###
|
36 |
+
masking_prob: float = 0.15
|
37 |
+
|
38 |
+
### Huggingface Config ###
|
39 |
+
hf_model_name: str = "deepset/roberta-base-squad2"
|
40 |
+
|
41 |
+
### Model Config ###
|
42 |
+
pretrained_backbone: Literal["pretrained", "pretrained_huggingface", "random"] = "pretrained"
|
43 |
+
max_position_embeddings: int = 512
|
44 |
+
path_to_pretrained_weights: str = None
|
45 |
+
|
46 |
+
### Added in to_dict() method so this Config is compatible with Huggingface Trainer!!! ###
|
47 |
+
def to_dict(self):
|
48 |
+
return asdict(self)
|
49 |
+
|
50 |
+
|
51 |
+
def random_masking_text(tokens,
|
52 |
+
special_tokens_mask,
|
53 |
+
vocab_size=50264,
|
54 |
+
special_ids=(0, 1, 2, 3, 50264),
|
55 |
+
mask_ratio=0.15,
|
56 |
+
mask_token=50264):
|
57 |
+
"""
|
58 |
+
Function for our random masking of tokens (excluding special tokens). This follow the logic provided
|
59 |
+
by BERT/RoBERTa:
|
60 |
+
|
61 |
+
- Select 15% of the tokens for masking
|
62 |
+
- 80% of the selected tokens are replaced with a mask token
|
63 |
+
- 10% of the selected tokens are replaced with another random token
|
64 |
+
- 10% of the selected tokens are left alone
|
65 |
+
|
66 |
+
This is almost identical to the masking function in our introductory jupyter notebook walkthrough of
|
67 |
+
masked language modeling, but some minor changes are made to apply masking to batches of tokens
|
68 |
+
rather than just one sequence at a time!
|
69 |
+
"""
|
70 |
+
|
71 |
+
### Create Random Uniform Sample Tensor ###
|
72 |
+
random_masking = torch.rand(*tokens.shape)
|
73 |
+
|
74 |
+
### Set Value of Special Tokens to 1 so we DONT MASK THEM ###
|
75 |
+
random_masking[special_tokens_mask == 1] = 1
|
76 |
+
|
77 |
+
### Get Boolean of Words under Masking Threshold ###
|
78 |
+
random_masking = (random_masking < mask_ratio)
|
79 |
+
|
80 |
+
### Create Labels ###
|
81 |
+
labels = torch.full((tokens.shape), -100)
|
82 |
+
labels[random_masking] = tokens[random_masking]
|
83 |
+
|
84 |
+
### Get Indexes of True ###
|
85 |
+
random_selected_idx = random_masking.nonzero()
|
86 |
+
|
87 |
+
### 80% Of the Time Replace with Mask Token ###
|
88 |
+
masking_flag = torch.rand(len(random_selected_idx))
|
89 |
+
masking_flag = (masking_flag < 0.8)
|
90 |
+
selected_idx_for_masking = random_selected_idx[masking_flag]
|
91 |
+
|
92 |
+
### Seperate out remaining indexes to be assigned ###
|
93 |
+
unselected_idx_for_masking = random_selected_idx[~masking_flag]
|
94 |
+
|
95 |
+
### 10% of the time (or 50 percent of the remaining 20%) we fill with random token ###
|
96 |
+
### The remaining times, leave the text as is ###
|
97 |
+
masking_flag = torch.rand(len(unselected_idx_for_masking))
|
98 |
+
masking_flag = (masking_flag < 0.5)
|
99 |
+
selected_idx_for_random_filling = unselected_idx_for_masking[masking_flag]
|
100 |
+
selected_idx_to_be_left_alone = unselected_idx_for_masking[~masking_flag]
|
101 |
+
|
102 |
+
### Fill Mask Tokens ###
|
103 |
+
if len(selected_idx_for_masking) > 0:
|
104 |
+
tokens[selected_idx_for_masking[:, 0], selected_idx_for_masking[:, 1]] = mask_token
|
105 |
+
|
106 |
+
### Fill Random Tokens ###
|
107 |
+
if len(selected_idx_for_random_filling) > 0:
|
108 |
+
non_special_ids = list(set(range(vocab_size)) - set(special_ids))
|
109 |
+
randomly_selected_tokens = torch.tensor(random.sample(non_special_ids, len(selected_idx_for_random_filling)))
|
110 |
+
tokens[selected_idx_for_random_filling[:, 0], selected_idx_for_random_filling[:, 1]] = randomly_selected_tokens
|
111 |
+
|
112 |
+
return tokens, labels
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
def ExtractiveQAPreProcesing():
|
117 |
+
|
118 |
+
tokenizer = RobertaTokenizerFast.from_pretrained("deepset/roberta-base-squad2")
|
119 |
+
|
120 |
+
def char2token_mapping(examples):
|
121 |
+
#
|
122 |
+
# pprint(examples)
|
123 |
+
|
124 |
+
questions = [q.strip() for sublist in examples["questions"] for q in sublist]
|
125 |
+
# pprint(questions)
|
126 |
+
stories = []
|
127 |
+
for idx, sublist in enumerate(examples["questions"]):
|
128 |
+
stories.extend([examples["story"][idx]] * len(sublist))
|
129 |
+
|
130 |
+
# Now both questions and stories are 1D lists of the same length
|
131 |
+
input = tokenizer(
|
132 |
+
text=questions,
|
133 |
+
text_pair=stories,
|
134 |
+
max_length=512,
|
135 |
+
truncation="only_second",
|
136 |
+
return_offsets_mapping=True,
|
137 |
+
padding="max_length",
|
138 |
+
)
|
139 |
+
offset_mapping = input.pop("offset_mapping")
|
140 |
+
# pprint(input)
|
141 |
+
answers = examples["answers"]
|
142 |
+
input_text =[]
|
143 |
+
answer_start = []
|
144 |
+
answer_end=[]
|
145 |
+
|
146 |
+
for key in answers:
|
147 |
+
input_text.extend(key["input_text"])
|
148 |
+
answer_start.extend(key["answer_start"])
|
149 |
+
answer_end.extend(key["answer_end"])
|
150 |
+
|
151 |
+
|
152 |
+
starting_token_idxs = []
|
153 |
+
ending_token_idxs = []
|
154 |
+
convert_data = {}
|
155 |
+
|
156 |
+
for i, offset in enumerate(offset_mapping):
|
157 |
+
|
158 |
+
start_char = answer_start[i]
|
159 |
+
end_char = answer_end[i]
|
160 |
+
|
161 |
+
# if start_char == -1 or end_char == -1:
|
162 |
+
# starting_token_idxs.append(0)
|
163 |
+
# ending_token_idxs.append(0)
|
164 |
+
# continue
|
165 |
+
|
166 |
+
sequencen_ids = input.sequence_ids(i)
|
167 |
+
|
168 |
+
context_start = None
|
169 |
+
context_end = None
|
170 |
+
|
171 |
+
for idx, id in enumerate(sequencen_ids):
|
172 |
+
if context_start is None and id == 1:
|
173 |
+
context_start = idx
|
174 |
+
elif context_start is not None and id != 1:
|
175 |
+
context_end = idx - 1
|
176 |
+
break
|
177 |
+
elif context_start is not None and idx == len(sequencen_ids) - 1:
|
178 |
+
context_end = idx
|
179 |
+
|
180 |
+
|
181 |
+
context_start_char = offset[context_start][0]
|
182 |
+
context_end_char = offset[context_end][-1]
|
183 |
+
|
184 |
+
if (start_char >= context_start_char) and (end_char <= context_end_char):
|
185 |
+
# print(start_char, end_char)
|
186 |
+
start_token_idx = None
|
187 |
+
end_token_idx = None
|
188 |
+
for token_idx, (offsets, seq_id) in enumerate(zip(offset, sequencen_ids)):
|
189 |
+
if seq_id == 1:
|
190 |
+
if start_char in range(offsets[0], offsets[1] + 1):
|
191 |
+
start_token_idx = token_idx
|
192 |
+
if end_char in range(offsets[0], offsets[1] + 1):
|
193 |
+
end_token_idx = token_idx
|
194 |
+
|
195 |
+
starting_token_idxs.append(start_token_idx)
|
196 |
+
ending_token_idxs.append(end_token_idx)
|
197 |
+
# print("start_token_idx", start_token_idx, "end_token_idx", end_token_idx)
|
198 |
+
else:
|
199 |
+
starting_token_idxs.append(0)
|
200 |
+
ending_token_idxs.append(0)
|
201 |
+
|
202 |
+
|
203 |
+
input["start_positions"] = starting_token_idxs
|
204 |
+
input["end_positions"] = ending_token_idxs
|
205 |
+
return input
|
206 |
+
|
207 |
+
return char2token_mapping
|
208 |
+
|
209 |
+
if __name__ == "__main__":
|
210 |
+
datasets = load_dataset("stanfordnlp/coqa")
|
211 |
+
|
212 |
+
# print(datasets)
|
213 |
+
|
214 |
+
processor = ExtractiveQAPreProcesing()
|
215 |
+
data = datasets["train"][:1]
|
216 |
+
print("Raw Data:", data["answers"])
|
217 |
+
result = processor(data)
|
218 |
+
# pprint(processor(data))
|
219 |
+
|
220 |
+
# Train model
|