Test / app.py
TanishqO0F's picture
Update app.py
5dcc927 verified
raw
history blame
5.25 kB
import gradio as gr
import requests
from bs4 import BeautifulSoup
import pandas as pd
from transformers import pipeline
import plotly.express as px
from datetime import datetime, timedelta
# Load the Excel file with company names and symbols
file_path = '/home/user/app/Top 2000 Valued Companies with Ticker Symbols.xlsx'
companies_df = pd.read_excel(file_path)
# Function to get stock symbol for a company name
def get_stock_symbol(company_name):
match = companies_df[companies_df['Name'].str.contains(company_name, case=False, na=False)]
if not match.empty:
return match.iloc[0]['Symbol']
return None
# Sentiment Analysis Model
sentiment_model = pipeline(model="finiteautomata/bertweet-base-sentiment-analysis")
# Function to encode special characters in the search query
def encode_special_characters(text):
encoded_text = ''
special_characters = {'&': '%26', '=': '%3D', '+': '%2B', ' ': '%20'}
for char in text.lower():
encoded_text += special_characters.get(char, char)
return encoded_text
# Function to fetch news articles
def fetch_news(query, num_articles=10):
encoded_query = encode_special_characters(query)
url = f"https://news.google.com/search?q={encoded_query}&hl=en-US&gl=in&ceid=US%3Aen&num={num_articles}"
try:
response = requests.get(url)
response.raise_for_status()
except requests.RequestException as e:
print(f"Error fetching news: {e}")
return pd.DataFrame()
soup = BeautifulSoup(response.text, 'html.parser')
articles = soup.find_all('article')
news_data = []
for article in articles[:num_articles]:
link = article.find('a')['href'].replace("./articles/", "https://news.google.com/articles/")
text_parts = article.get_text(separator='\n').split('\n')
news_data.append({
'Title': text_parts[2] if len(text_parts) > 2 else 'Missing',
'Source': text_parts[0] if len(text_parts) > 0 else 'Missing',
'Time': text_parts[3] if len(text_parts) > 3 else 'Missing',
'Author': text_parts[4].split('By ')[-1] if len(text_parts) > 4 else 'Missing',
'Link': link
})
return pd.DataFrame(news_data)
# Function to perform sentiment analysis
def analyze_sentiment(text):
result = sentiment_model(text)[0]
return result['label'], result['score']
# Function to fetch stock data
def fetch_stock_data(symbol):
url = "https://alpha-vantage.p.rapidapi.com/query"
querystring = {"function":"TIME_SERIES_DAILY", "symbol":symbol, "outputsize":"compact", "datatype":"json"}
headers = {
"x-rapidapi-key": "e078dae417mshb13ddc2d8149768p1608e9jsn888ce49e8554",
"x-rapidapi-host": "alpha-vantage.p.rapidapi.com"
}
response = requests.get(url, headers=headers, params=querystring)
data = response.json()
if "Time Series (Daily)" not in data:
return pd.DataFrame()
stock_data = pd.DataFrame(data["Time Series (Daily)"]).T
stock_data.index = pd.to_datetime(stock_data.index)
stock_data.columns = ["Open", "High", "Low", "Close", "Volume"]
return stock_data
# Main function to process news and perform analysis
def news_and_analysis(query):
# Fetch news
news_df = fetch_news(query)
if news_df.empty:
return "No news articles found.", None, None
# Perform sentiment analysis
news_df['Sentiment'], news_df['Sentiment_Score'] = zip(*news_df['Title'].apply(analyze_sentiment))
# Create sentiment plot
sentiment_fig = px.bar(
news_df,
x='Time',
y='Sentiment_Score',
color='Sentiment',
color_discrete_map={'positive': 'green', 'neutral': 'gray', 'negative': 'red'},
title='News Sentiment Over Time',
labels={'Time': 'Publication Time', 'Sentiment_Score': 'Sentiment Score'}
)
# Check if query is a company name and fetch stock data
stock_symbol = get_stock_symbol(query)
if stock_symbol:
stock_data = fetch_stock_data(stock_symbol)
if not stock_data.empty:
stock_fig = px.line(stock_data, x=stock_data.index, y='Close', title=f'{stock_symbol} Stock Price')
return news_df, sentiment_fig, stock_fig
return news_df, sentiment_fig, None
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# Financial News Sentiment Analysis
Analyze the sentiment of news articles related to financial topics or companies.
Enter a topic or company name to get started.
"""
)
with gr.Row():
with gr.Column():
topic = gr.Textbox(label="Enter a financial topic or company name", placeholder="e.g., Apple Inc.")
analyze_btn = gr.Button(value="Analyze")
with gr.Column():
news_output = gr.DataFrame(label="News and Sentiment Analysis")
sentiment_plot = gr.Plot(label="Sentiment Analysis")
stock_plot = gr.Plot(label="Stock Price Movement")
analyze_btn.click(
news_and_analysis,
inputs=[topic],
outputs=[news_output, sentiment_plot, stock_plot]
)
if __name__ == "__main__":
demo.launch()