Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
from bs4 import BeautifulSoup | |
import pandas as pd | |
from transformers import pipeline | |
import plotly.graph_objects as go | |
from datetime import datetime, timedelta | |
# Sentiment Analysis Model | |
sentiment_model = pipeline(model="finiteautomata/bertweet-base-sentiment-analysis") | |
# Function to encode special characters in the search query | |
def encode_special_characters(text): | |
encoded_text = '' | |
special_characters = {'&': '%26', '=': '%3D', '+': '%2B', ' ': '%20'} | |
for char in text.lower(): | |
encoded_text += special_characters.get(char, char) | |
return encoded_text | |
# Function to fetch news articles | |
def fetch_news(query, num_articles=10): | |
encoded_query = encode_special_characters(query) | |
url = f"https://news.google.com/search?q={encoded_query}&hl=en-US&gl=in&ceid=US%3Aen&num={num_articles}" | |
try: | |
response = requests.get(url) | |
response.raise_for_status() | |
except requests.RequestException as e: | |
print(f"Error fetching news: {e}") | |
return pd.DataFrame() | |
soup = BeautifulSoup(response.text, 'html.parser') | |
articles = soup.find_all('article') | |
news_data = [] | |
for article in articles[:num_articles]: | |
link = article.find('a')['href'].replace("./articles/", "https://news.google.com/articles/") | |
text_parts = article.get_text(separator='\n').split('\n') | |
news_data.append({ | |
'Title': text_parts[2] if len(text_parts) > 2 else 'Missing', | |
'Source': text_parts[0] if len(text_parts) > 0 else 'Missing', | |
'Time': text_parts[3] if len(text_parts) > 3 else 'Missing', | |
'Author': text_parts[4].split('By ')[-1] if len(text_parts) > 4 else 'Missing', | |
'Link': link | |
}) | |
return pd.DataFrame(news_data) | |
# Function to perform sentiment analysis | |
def analyze_sentiment(text): | |
result = sentiment_model(text)[0] | |
return result['label'], result['score'] | |
# Main function to process news and perform analysis | |
def news_and_analysis(query): | |
# Fetch news | |
news_df = fetch_news(query) | |
if news_df.empty: | |
return "No news articles found.", None | |
# Perform sentiment analysis | |
news_df['Sentiment'], news_df['Sentiment_Score'] = zip(*news_df['Title'].apply(analyze_sentiment)) | |
# Create sentiment plot | |
sentiment_fig = go.Figure(data=[go.Bar( | |
x=news_df['Time'], | |
y=news_df['Sentiment_Score'], | |
marker_color=news_df['Sentiment'].map({'positive': 'green', 'neutral': 'gray', 'negative': 'red'}) | |
)]) | |
sentiment_fig.update_layout(title='News Sentiment Over Time', xaxis_title='Time', yaxis_title='Sentiment Score') | |
return news_df, sentiment_fig | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Financial News Sentiment Analysis") | |
topic = gr.Textbox(label="Enter a financial topic or company name") | |
analyze_btn = gr.Button(value="Analyze") | |
news_output = gr.DataFrame(label="News and Sentiment Analysis") | |
sentiment_plot = gr.Plot(label="Sentiment Analysis") | |
analyze_btn.click( | |
news_and_analysis, | |
inputs=[topic], | |
outputs=[news_output, sentiment_plot] | |
) | |
if __name__ == "__main__": | |
demo.launch() |