|
import gradio as gr |
|
from sentiwordnet_calculator import SentimentPipeline |
|
|
|
pipe = SentimentPipeline("Tanor/SRGPTSENTPOS4", "Tanor/SRGPTSENTNEG4") |
|
|
|
|
|
def calculate(text): |
|
result = pipe(text) |
|
|
|
visual = result |
|
|
|
numerical = {key: round(value, 2) for key, value in result.items()} |
|
|
|
numerical_str = ", ".join(f"{key}: {value}" for key, value in numerical.items()) |
|
return visual, numerical_str |
|
|
|
iface = gr.Interface( |
|
fn=calculate, |
|
inputs=gr.inputs.Textbox(lines=5, placeholder="Enter your text here..."), |
|
outputs=[gr.outputs.Label(num_top_classes=3), "text"], |
|
title="Sentiment Analysis for Serbian", |
|
description=""" |
|
This tool performs sentiment analysis on the input text using a model trained on Serbian dictionary definitions. |
|
The pretrained model [sr-gpt2-large model by Mihailo Škorić](https://huggingface.co/JeRTeh/sr-gpt2-large), |
|
was fine-tuned on selected definitions from the Serbian WordNet. Please limit the input to 300 tokens. |
|
The outputs represent the Positive (POS), Negative (NEG), and Objective (OBJ) sentiment scores. |
|
""", |
|
examples=[ |
|
["osoba koja ne prihvata nove ideje"], |
|
["intenzivna ojađenost"], |
|
["uopštenih osećanja tuge"], |
|
["žalostan zbog gubitka ili uskraćenosti"], |
|
["činjenje dobra; osećaj dobrotvornosti"], |
|
["Jako pozitivno osećanje poštovanja i privrežen..."], |
|
["usrećiti ili zadovoljiti"], |
|
["Korisna ili vredna osobina"], |
|
] |
|
|
|
) |
|
|
|
iface.launch() |
|
|