File size: 1,580 Bytes
684137a
 
b9e824a
0e971ba
684137a
 
b9e824a
 
 
 
 
 
 
 
684137a
b9e824a
 
 
 
0b34b06
 
 
0e971ba
 
0b34b06
47112e7
 
 
 
 
 
 
 
 
 
 
 
b9e824a
c4d01d7
b9e824a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio as gr
from sentiwordnet_calculator import SentimentPipeline

pipe = SentimentPipeline("Tanor/BERTicSENTPOS4", "Tanor/BERTicSENTNEG4")

def calculate(text):
    result = pipe(text)
    # Visual representation
    visual = result
    # Numerical representation
    numerical = {key: round(value, 2) for key, value in result.items()}
    # Create a formatted string
    numerical_str = ", ".join(f"{key}: {value}" for key, value in numerical.items())
    return visual, numerical_str

iface = gr.Interface(
    fn=calculate, 
    inputs=gr.inputs.Textbox(lines=5, placeholder="Enter your text here..."), 
    outputs=[gr.outputs.Label(num_top_classes=3), "text"],
    title="Sentiment Analysis for Serbian",
    description="""
    This tool performs sentiment analysis on the input text using a model trained on Serbian dictionary definitions. 
    The pretrained model [BERTic from classla](https://huggingface.co/classla/bcms-bertic), 
    was fine-tuned on selected definitions from the Serbian WordNet. Please limit the input to 300 tokens. 
    The outputs represent the Positive (POS), Negative (NEG), and Objective (OBJ) sentiment scores.
    """,
    examples=[
        ["osoba koja ne prihvata nove ideje"],
        ["intenzivna ojađenost"],
        ["uopštenih osećanja tuge"],
        ["žalostan zbog gubitka ili uskraćenosti"],
        ["činjenje dobra; osećaj dobrotvornosti"],
        ["Jako pozitivno osećanje poštovanja i privrežen..."],
        ["usrećiti ili zadovoljiti"],
        ["Korisna ili vredna osobina"],
    ]

)

iface.launch()