Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
import torch | |
from transformers import ViTForImageClassification, ViTImageProcessor | |
import nibabel as nib # For loading .nii files | |
from PIL import Image # For loading .jpg and .jpeg files | |
# Function to preprocess images based on their file format | |
def preprocess_image(image_path): | |
ext = os.path.splitext(image_path)[-1].lower() # Get the file extension | |
# Case 1: .nii files (NIfTI format) | |
if ext == '.nii' or ext == '.nii.gz': | |
# Load the .nii image | |
nii_image = nib.load(image_path) | |
image_data = nii_image.get_fdata() | |
# Convert to tensor and reshape to [C, H, W] format | |
image_tensor = torch.tensor(image_data).float() | |
# Handle cases where the image might have a different shape (e.g., single channel vs multiple channels) | |
if len(image_tensor.shape) == 3: | |
image_tensor = image_tensor.unsqueeze(0) # Add channel dimension if not present | |
# Case 2: .jpg and .jpeg files (JPEG format) | |
elif ext in ['.jpg', '.jpeg']: | |
# Load the image using PIL | |
img = Image.open(image_path).convert('RGB') # Convert to RGB | |
img = img.resize((224, 224)) # Resize to the input size expected by ViT (224x224) | |
# Convert to numpy array and then to tensor | |
img_np = np.array(img) | |
image_tensor = torch.tensor(img_np).permute(2, 0, 1).float() # Rearrange to [C, H, W] | |
else: | |
raise ValueError(f"Unsupported file format: {ext}") | |
# Normalize image tensor (if required) | |
image_tensor /= 255.0 # Normalize pixel values to [0, 1] | |
return image_tensor |