Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,14 +7,6 @@ import nibabel as nib
|
|
7 |
from PIL import Image
|
8 |
from torch.utils.data import Dataset, DataLoader
|
9 |
import streamlit as st
|
10 |
-
import requests
|
11 |
-
import tempfile
|
12 |
-
|
13 |
-
# Function to download zip files from URL
|
14 |
-
def download_zip(url, download_path):
|
15 |
-
response = requests.get(url)
|
16 |
-
with open(download_path, 'wb') as file:
|
17 |
-
file.write(response.content)
|
18 |
|
19 |
# Function to extract zip files
|
20 |
def extract_zip(zip_file, extract_to):
|
@@ -45,18 +37,24 @@ def preprocess_image(image_path):
|
|
45 |
|
46 |
# Prepare dataset
|
47 |
def prepare_dataset(extracted_folder):
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
image_paths = []
|
49 |
labels = []
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
for img_file in os.listdir(folder_path):
|
61 |
if img_file.endswith(('.nii', '.jpg', '.jpeg')):
|
62 |
image_paths.append(os.path.join(folder_path, img_file))
|
@@ -102,29 +100,24 @@ def fine_tune_model(train_loader):
|
|
102 |
# Streamlit UI for Fine-tuning
|
103 |
st.title("Fine-tune ViT on MRI/CT Scans for MS & Neurodegenerative Diseases")
|
104 |
|
105 |
-
|
|
|
106 |
|
107 |
if st.button("Start Training"):
|
108 |
extraction_dir = "extracted_files"
|
109 |
os.makedirs(extraction_dir, exist_ok=True)
|
110 |
|
111 |
-
# Download the zip file
|
112 |
-
|
113 |
-
download_zip(zip_url, tmp_file.name)
|
114 |
|
115 |
-
|
116 |
-
|
117 |
|
118 |
# Prepare dataset
|
119 |
image_paths, labels = prepare_dataset(extraction_dir)
|
120 |
dataset = CustomImageDataset(image_paths, labels)
|
121 |
-
|
122 |
-
if len(image_paths) == 0:
|
123 |
-
st.error("No images found in the specified directory. Please check the folder structure.")
|
124 |
-
else:
|
125 |
-
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
|
126 |
-
|
127 |
-
# Fine-tune the model
|
128 |
-
final_loss = fine_tune_model(train_loader)
|
129 |
-
st.write(f"Training Complete with Final Loss: {final_loss}")
|
130 |
|
|
|
|
|
|
|
|
7 |
from PIL import Image
|
8 |
from torch.utils.data import Dataset, DataLoader
|
9 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Function to extract zip files
|
12 |
def extract_zip(zip_file, extract_to):
|
|
|
37 |
|
38 |
# Prepare dataset
|
39 |
def prepare_dataset(extracted_folder):
|
40 |
+
# Ensure the path exists
|
41 |
+
neuronii_path = os.path.join(extracted_folder, "neuroniiimages")
|
42 |
+
|
43 |
+
if not os.path.exists(neuronii_path):
|
44 |
+
raise FileNotFoundError(f"The folder neuroniiimages does not exist in the extracted folder: {neuronii_path}")
|
45 |
+
|
46 |
image_paths = []
|
47 |
labels = []
|
48 |
|
49 |
+
for disease_folder in ['alzheimers_datasets', 'parkinson_datasets', 'MSjpg']:
|
50 |
+
folder_path = os.path.join(neuronii_path, disease_folder)
|
51 |
+
|
52 |
+
# Check if the subfolder exists
|
53 |
+
if not os.path.exists(folder_path):
|
54 |
+
raise FileNotFoundError(f"The folder {disease_folder} does not exist at path: {folder_path}")
|
55 |
+
|
56 |
+
label = {'alzheimers_datasets': 0, 'parkinson_datasets': 1, 'MSjpg': 2}[disease_folder]
|
57 |
+
|
58 |
for img_file in os.listdir(folder_path):
|
59 |
if img_file.endswith(('.nii', '.jpg', '.jpeg')):
|
60 |
image_paths.append(os.path.join(folder_path, img_file))
|
|
|
100 |
# Streamlit UI for Fine-tuning
|
101 |
st.title("Fine-tune ViT on MRI/CT Scans for MS & Neurodegenerative Diseases")
|
102 |
|
103 |
+
# Provide the correct zip file URL
|
104 |
+
zip_file_url = "https://huggingface.co/spaces/Tanusree88/ViT-MRI-FineTuning/resolve/main/neuroniiimages.zip"
|
105 |
|
106 |
if st.button("Start Training"):
|
107 |
extraction_dir = "extracted_files"
|
108 |
os.makedirs(extraction_dir, exist_ok=True)
|
109 |
|
110 |
+
# Download the zip file (this is a placeholder; use requests or any other method to download the zip file)
|
111 |
+
zip_file = "neuroniiimages.zip" # Assuming you downloaded it with this name
|
|
|
112 |
|
113 |
+
# Extract zip file
|
114 |
+
extract_zip(zip_file, extraction_dir)
|
115 |
|
116 |
# Prepare dataset
|
117 |
image_paths, labels = prepare_dataset(extraction_dir)
|
118 |
dataset = CustomImageDataset(image_paths, labels)
|
119 |
+
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
# Fine-tune the model
|
122 |
+
final_loss = fine_tune_model(train_loader)
|
123 |
+
st.write(f"Training Complete with Final Loss: {final_loss}")
|