Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,94 @@
|
|
1 |
-
import zipfile
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
4 |
def extract_zip(zip_file, extract_to):
|
5 |
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
|
6 |
zip_ref.extractall(extract_to)
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import zipfile
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from transformers import ViTForImageClassification, AdamW
|
6 |
+
import nibabel as nib
|
7 |
+
from PIL import Image
|
8 |
+
from torch.utils.data import Dataset, DataLoader
|
9 |
+
import streamlit as st
|
10 |
|
11 |
+
# 1. Function to extract zip files
|
12 |
def extract_zip(zip_file, extract_to):
|
13 |
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
|
14 |
zip_ref.extractall(extract_to)
|
15 |
|
16 |
+
# 2. Preprocess images
|
17 |
+
def preprocess_image(image_path):
|
18 |
+
ext = os.path.splitext(image_path)[-1].lower()
|
19 |
+
|
20 |
+
if ext == '.nii' or ext == '.nii.gz':
|
21 |
+
nii_image = nib.load(image_path)
|
22 |
+
image_data = nii_image.get_fdata()
|
23 |
+
image_tensor = torch.tensor(image_data).float()
|
24 |
+
if len(image_tensor.shape) == 3:
|
25 |
+
image_tensor = image_tensor.unsqueeze(0)
|
26 |
+
|
27 |
+
elif ext in ['.jpg', '.jpeg']:
|
28 |
+
img = Image.open(image_path).convert('RGB').resize((224, 224))
|
29 |
+
img_np = np.array(img)
|
30 |
+
image_tensor = torch.tensor(img_np).permute(2, 0, 1).float()
|
31 |
+
|
32 |
+
else:
|
33 |
+
raise ValueError(f"Unsupported format: {ext}")
|
34 |
+
|
35 |
+
image_tensor /= 255.0 # Normalize to [0, 1]
|
36 |
+
return image_tensor
|
37 |
+
|
38 |
+
# 3. Label images
|
39 |
+
def prepare_dataset(extracted_folder):
|
40 |
+
image_paths = []
|
41 |
+
labels = []
|
42 |
+
for disease_folder in ['alzheimers', 'parkinsons', 'ms']:
|
43 |
+
folder_path = os.path.join(extracted_folder, disease_folder)
|
44 |
+
label = {'alzheimers': 0, 'parkinsons': 1, 'ms': 2}[disease_folder]
|
45 |
+
for img_file in os.listdir(folder_path):
|
46 |
+
if img_file.endswith(('.nii', '.jpg', '.jpeg')):
|
47 |
+
image_paths.append(os.path.join(folder_path, img_file))
|
48 |
+
labels.append(label)
|
49 |
+
return image_paths, labels
|
50 |
+
|
51 |
+
# 4. Custom Dataset
|
52 |
+
class CustomImageDataset(Dataset):
|
53 |
+
def __init__(self, image_paths, labels):
|
54 |
+
self.image_paths = image_paths
|
55 |
+
self.labels = labels
|
56 |
+
|
57 |
+
def __len__(self):
|
58 |
+
return len(self.image_paths)
|
59 |
+
|
60 |
+
def __getitem__(self, idx):
|
61 |
+
image = preprocess_image(self.image_paths[idx])
|
62 |
+
label = self.labels[idx]
|
63 |
+
return image, label
|
64 |
+
|
65 |
+
# 5. Training function
|
66 |
+
def fine_tune_model(train_loader):
|
67 |
+
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', num_labels=3)
|
68 |
+
model.train()
|
69 |
+
optimizer = AdamW(model.parameters(), lr=1e-4)
|
70 |
+
criterion = torch.nn.CrossEntropyLoss()
|
71 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
72 |
+
model.to(device)
|
73 |
+
for epoch in range(10):
|
74 |
+
running_loss = 0.0
|
75 |
+
for images, labels in train_loader:
|
76 |
+
images, labels = images.to(device), labels.to(device)
|
77 |
+
optimizer.zero_grad()
|
78 |
+
outputs = model(pixel_values=images).logits
|
79 |
+
loss = criterion(outputs, labels)
|
80 |
+
loss.backward()
|
81 |
+
optimizer.step()
|
82 |
+
running_loss += loss.item()
|
83 |
+
return running_loss / len(train_loader)
|
84 |
+
|
85 |
+
# Streamlit UI
|
86 |
+
st.title("Fine-tune ViT on MRI Scans")
|
87 |
+
|
88 |
+
if st.button("Start Training"):
|
89 |
+
extract_zip('your_zip_file.zip', 'extracted_folder/')
|
90 |
+
image_paths, labels = prepare_dataset('extracted_folder/')
|
91 |
+
dataset = CustomImageDataset(image_paths, labels)
|
92 |
+
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
|
93 |
+
final_loss = fine_tune_model(train_loader)
|
94 |
+
st.write(f"Training Complete with Final Loss: {final_loss}")
|