Spaces:
Sleeping
Sleeping
Create traininginVIT
Browse files- traininginVIT +56 -0
traininginVIT
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data import DataLoader, Dataset
|
2 |
+
import torch
|
3 |
+
from transformers import ViTForImageClassification, AdamW
|
4 |
+
|
5 |
+
# Custom dataset class for loading images
|
6 |
+
class MRIDataset(Dataset):
|
7 |
+
def __init__(self, image_paths, labels):
|
8 |
+
self.image_paths = image_paths
|
9 |
+
self.labels = labels
|
10 |
+
|
11 |
+
def __len__(self):
|
12 |
+
return len(self.image_paths)
|
13 |
+
|
14 |
+
def __getitem__(self, idx):
|
15 |
+
image = preprocess_image(self.image_paths[idx])
|
16 |
+
label = torch.tensor(self.labels[idx])
|
17 |
+
return image, label
|
18 |
+
|
19 |
+
# Load your ViT model and processor
|
20 |
+
model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224-in21k", num_labels=3)
|
21 |
+
processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
22 |
+
|
23 |
+
# Move the model to the device (GPU if available)
|
24 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
25 |
+
model.to(device)
|
26 |
+
|
27 |
+
# Define optimizer and loss function
|
28 |
+
optimizer = AdamW(model.parameters(), lr=1e-4)
|
29 |
+
criterion = torch.nn.CrossEntropyLoss()
|
30 |
+
|
31 |
+
# Load your dataset
|
32 |
+
image_paths = ["path_to_image1.npy", "path_to_image2.npy"] # Update with actual image paths
|
33 |
+
labels = [0, 1] # Corresponding labels
|
34 |
+
dataset = MRIDataset(image_paths, labels)
|
35 |
+
data_loader = DataLoader(dataset, batch_size=16, shuffle=True)
|
36 |
+
|
37 |
+
# Fine-tuning loop
|
38 |
+
num_epochs = 10
|
39 |
+
for epoch in range(num_epochs):
|
40 |
+
model.train()
|
41 |
+
total_loss = 0
|
42 |
+
for images, labels in data_loader:
|
43 |
+
images, labels = images.to(device), labels.to(device)
|
44 |
+
|
45 |
+
optimizer.zero_grad()
|
46 |
+
outputs = model(pixel_values=images).logits
|
47 |
+
loss = criterion(outputs, labels)
|
48 |
+
loss.backward()
|
49 |
+
optimizer.step()
|
50 |
+
|
51 |
+
total_loss += loss.item()
|
52 |
+
|
53 |
+
print(f'Epoch {epoch+1}/{num_epochs}, Loss: {total_loss/len(data_loader)}')
|
54 |
+
|
55 |
+
# Save the fine-tuned model
|
56 |
+
torch.save(model.state_dict(), 'vit_finetuned.pth')
|