Spaces:
Sleeping
Sleeping
Delete traininginVIT
Browse files- traininginVIT +0 -79
traininginVIT
DELETED
@@ -1,79 +0,0 @@
|
|
1 |
-
from torch.utils.data import DataLoader, Dataset
|
2 |
-
import torch
|
3 |
-
from transformers import ViTForImageClassification, AdamW
|
4 |
-
import os
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
import streamlit as st
|
8 |
-
from transformers import ViTForImageClassification, ViTImageProcessor
|
9 |
-
|
10 |
-
# Custom dataset class for loading images
|
11 |
-
class MRIDataset(Dataset):
|
12 |
-
def __init__(self, image_paths, labels):
|
13 |
-
self.image_paths = image_paths
|
14 |
-
self.labels = labels
|
15 |
-
|
16 |
-
def __len__(self):
|
17 |
-
return len(self.image_paths)
|
18 |
-
|
19 |
-
def __getitem__(self, idx):
|
20 |
-
image = preprocess_image(self.image_paths[idx])
|
21 |
-
label = torch.tensor(self.labels[idx])
|
22 |
-
return image, label
|
23 |
-
|
24 |
-
# Load your ViT model and processor
|
25 |
-
model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224-in21k", num_labels=3)
|
26 |
-
processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
27 |
-
|
28 |
-
# Move the model to the device (GPU if available)
|
29 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
30 |
-
model.to(device)
|
31 |
-
|
32 |
-
# Define optimizer and loss function
|
33 |
-
optimizer = AdamW(model.parameters(), lr=1e-4)
|
34 |
-
criterion = torch.nn.CrossEntropyLoss()
|
35 |
-
|
36 |
-
# Load your dataset
|
37 |
-
image_paths = ["path_to_image1.npy", "path_to_image2.npy"] # Update with actual image paths
|
38 |
-
labels = [0, 1] # Corresponding labels
|
39 |
-
dataset = MRIDataset(image_paths, labels)
|
40 |
-
data_loader = DataLoader(dataset, batch_size=16, shuffle=True)
|
41 |
-
|
42 |
-
# Fine-tuning loop
|
43 |
-
num_epochs = 10
|
44 |
-
for epoch in range(num_epochs):
|
45 |
-
model.train()
|
46 |
-
total_loss = 0
|
47 |
-
for images, labels in data_loader:
|
48 |
-
images, labels = images.to(device), labels.to(device)
|
49 |
-
|
50 |
-
optimizer.zero_grad()
|
51 |
-
outputs = model(pixel_values=images).logits
|
52 |
-
loss = criterion(outputs, labels)
|
53 |
-
loss.backward()
|
54 |
-
optimizer.step()
|
55 |
-
|
56 |
-
total_loss += loss.item()
|
57 |
-
|
58 |
-
print(f'Epoch {epoch+1}/{num_epochs}, Loss: {total_loss/len(data_loader)}')
|
59 |
-
|
60 |
-
# Save the fine-tuned model
|
61 |
-
torch.save(model.state_dict(), 'vit_finetuned.pth')
|
62 |
-
|
63 |
-
def fine_tune_model():
|
64 |
-
# Your fine-tuning logic goes here (using the ViT model)
|
65 |
-
num_epochs = 10
|
66 |
-
running_loss = 0.0
|
67 |
-
for epoch in range(num_epochs):
|
68 |
-
# Fine-tuning loop (train the model)
|
69 |
-
# ...
|
70 |
-
running_loss += 0.5 # Just a placeholder for demo purposes
|
71 |
-
return running_loss # Return the final loss after training
|
72 |
-
|
73 |
-
# Streamlit UI to trigger fine-tuning and display results
|
74 |
-
st.title("MRI Image Fine-Tuning with ViT")
|
75 |
-
|
76 |
-
if st.button("Start Training"):
|
77 |
-
# Run the fine-tuning loop when the button is clicked
|
78 |
-
final_loss = fine_tune_model() # Call the function where your fine-tuning loop is
|
79 |
-
st.write(f"Training complete with final loss: {final_loss}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|