import os import zipfile import numpy as np import torch from transformers import ViTForImageClassification, AdamW import nibabel as nib from PIL import Image from torch.utils.data import Dataset, DataLoader import streamlit as st # 1. Function to extract zip files def extract_zip(zip_file, extract_to): with zipfile.ZipFile(zip_file, 'r') as zip_ref: zip_ref.extractall(extract_to) # 2. Preprocess images def preprocess_image(image_path): ext = os.path.splitext(image_path)[-1].lower() if ext == '.nii' or ext == '.nii.gz': nii_image = nib.load(image_path) image_data = nii_image.get_fdata() image_tensor = torch.tensor(image_data).float() if len(image_tensor.shape) == 3: image_tensor = image_tensor.unsqueeze(0) elif ext in ['.jpg', '.jpeg']: img = Image.open(image_path).convert('RGB').resize((224, 224)) img_np = np.array(img) image_tensor = torch.tensor(img_np).permute(2, 0, 1).float() else: raise ValueError(f"Unsupported format: {ext}") image_tensor /= 255.0 # Normalize to [0, 1] return image_tensor # 3. Label images def prepare_dataset(extracted_folder): image_paths = [] labels = [] for disease_folder in ['alzheimers', 'parkinsons', 'ms']: folder_path = os.path.join(extracted_folder, disease_folder) label = {'alzheimers': 0, 'parkinsons': 1, 'ms': 2}[disease_folder] for img_file in os.listdir(folder_path): if img_file.endswith(('.nii', '.jpg', '.jpeg')): image_paths.append(os.path.join(folder_path, img_file)) labels.append(label) return image_paths, labels # 4. Custom Dataset class CustomImageDataset(Dataset): def __init__(self, image_paths, labels): self.image_paths = image_paths self.labels = labels def __len__(self): return len(self.image_paths) def __getitem__(self, idx): image = preprocess_image(self.image_paths[idx]) label = self.labels[idx] return image, label # 5. Training function def fine_tune_model(train_loader): model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', num_labels=3) model.train() optimizer = AdamW(model.parameters(), lr=1e-4) criterion = torch.nn.CrossEntropyLoss() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) for epoch in range(10): running_loss = 0.0 for images, labels in train_loader: images, labels = images.to(device), labels.to(device) optimizer.zero_grad() outputs = model(pixel_values=images).logits loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() return running_loss / len(train_loader) # Streamlit UI st.title("Fine-tune ViT on MRI Scans") if st.button("Start Training"): extract_zip('your_zip_file.zip', 'extracted_folder/') image_paths, labels = prepare_dataset('extracted_folder/') dataset = CustomImageDataset(image_paths, labels) train_loader = DataLoader(dataset, batch_size=32, shuffle=True) final_loss = fine_tune_model(train_loader) st.write(f"Training Complete with Final Loss: {final_loss}")