Tanveerooooooo commited on
Commit
0e355ac
Β·
verified Β·
1 Parent(s): d715a01

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -51
app.py CHANGED
@@ -1,64 +1,84 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
8
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
41
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
4
 
5
+ # Lightweight model for fast inference
6
+ model_name = "Salesforce/codet5p-220m"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForSeq2SeqLM.from_pretrained(
9
+ model_name,
10
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
11
+ )
12
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
+ model.to(device)
14
 
15
+ # Prompt templates
16
+ language_prompts = {
17
+ "Python": "Fix this Python code:\n",
18
+ "C": "Fix this C code:\n",
19
+ "C++": "Fix this C++ code:\n",
20
+ "JavaScript": "Fix this JavaScript code:\n"
21
+ }
22
 
23
+ # Debugger logic
24
+ def eternos_debugger(code, error, language):
25
+ if not code.strip():
26
+ return "❌ Please provide code."
27
+ prompt = f"{language_prompts[language]}{code}\nError:\n{error}\nCorrected code:\n"
28
+ inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(device)
29
+ outputs = model.generate(
30
+ **inputs,
31
+ max_new_tokens=128,
32
+ temperature=0.1,
33
+ do_sample=False,
34
+ pad_token_id=tokenizer.pad_token_id or tokenizer.eos_token_id
35
+ )
36
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
37
+ return response.strip()
38
 
39
+ # Reinforcement learning simulation
40
+ def rl_simulation():
41
+ import gym
42
+ import numpy as np
 
43
 
44
+ env = gym.make("FrozenLake-v1", is_slippery=False)
45
+ Q = np.zeros([env.observation_space.n, env.action_space.n])
46
+ episodes = 500
47
+ learning_rate = 0.8
48
+ discount_factor = 0.95
49
 
50
+ for ep in range(episodes):
51
+ state = env.reset()[0]
52
+ done = False
53
+ while not done:
54
+ action = np.argmax(Q[state, :] + np.random.randn(1, env.action_space.n) * (1.0 / (ep + 1)))
55
+ new_state, reward, done, _, _ = env.step(action)
56
+ Q[state, action] += learning_rate * (reward + discount_factor * np.max(Q[new_state, :]) - Q[state, action])
57
+ state = new_state
58
 
59
+ return "🧠 RL training complete! Agent learned to navigate FrozenLake."
 
 
 
 
 
 
 
60
 
61
+ # UI Layout (no background CSS for white theme)
62
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
63
+ with gr.Tab("Eternos Debugger"):
64
+ gr.Markdown("## βš™οΈ Eternos β€” AI Code Debugger")
65
+ gr.Markdown("Supports Python, C, C++, JavaScript β€” powered by CodeT5p (Fast Edition)")
66
 
67
+ with gr.Row():
68
+ code_input = gr.Textbox(label="πŸ“ Your Code", lines=12)
69
+ error_input = gr.Textbox(label="⚠️ Error Message (optional)", lines=4)
70
 
71
+ language_input = gr.Dropdown(["Python", "C", "C++", "JavaScript"], label="🌐 Language", value="Python")
72
+ output_code = gr.Code(label="βœ… Suggested Fix")
73
+ run_btn = gr.Button("πŸ› οΈ Fix Code")
74
+
75
+ run_btn.click(fn=eternos_debugger, inputs=[code_input, error_input, language_input], outputs=output_code)
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
+ with gr.Tab("Reinforcement Learning Demo"):
78
+ gr.Markdown("## πŸ€– Reinforcement Learning Example")
79
+ gr.Markdown("Simulates a Q-learning agent on FrozenLake.")
80
+ rl_output = gr.Textbox(label="πŸ”„ Output", lines=4)
81
+ rl_btn = gr.Button("🏁 Run RL Simulation")
82
+ rl_btn.click(fn=rl_simulation, inputs=[], outputs=rl_output)
83
 
84
+ demo.launch()