Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,84 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
42 |
|
43 |
-
"""
|
44 |
-
|
45 |
-
""
|
46 |
-
|
47 |
-
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
|
5 |
+
# Lightweight model for fast inference
|
6 |
+
model_name = "Salesforce/codet5p-220m"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
9 |
+
model_name,
|
10 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
11 |
+
)
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
model.to(device)
|
14 |
|
15 |
+
# Prompt templates
|
16 |
+
language_prompts = {
|
17 |
+
"Python": "Fix this Python code:\n",
|
18 |
+
"C": "Fix this C code:\n",
|
19 |
+
"C++": "Fix this C++ code:\n",
|
20 |
+
"JavaScript": "Fix this JavaScript code:\n"
|
21 |
+
}
|
22 |
|
23 |
+
# Debugger logic
|
24 |
+
def eternos_debugger(code, error, language):
|
25 |
+
if not code.strip():
|
26 |
+
return "β Please provide code."
|
27 |
+
prompt = f"{language_prompts[language]}{code}\nError:\n{error}\nCorrected code:\n"
|
28 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(device)
|
29 |
+
outputs = model.generate(
|
30 |
+
**inputs,
|
31 |
+
max_new_tokens=128,
|
32 |
+
temperature=0.1,
|
33 |
+
do_sample=False,
|
34 |
+
pad_token_id=tokenizer.pad_token_id or tokenizer.eos_token_id
|
35 |
+
)
|
36 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
37 |
+
return response.strip()
|
38 |
|
39 |
+
# Reinforcement learning simulation
|
40 |
+
def rl_simulation():
|
41 |
+
import gym
|
42 |
+
import numpy as np
|
|
|
43 |
|
44 |
+
env = gym.make("FrozenLake-v1", is_slippery=False)
|
45 |
+
Q = np.zeros([env.observation_space.n, env.action_space.n])
|
46 |
+
episodes = 500
|
47 |
+
learning_rate = 0.8
|
48 |
+
discount_factor = 0.95
|
49 |
|
50 |
+
for ep in range(episodes):
|
51 |
+
state = env.reset()[0]
|
52 |
+
done = False
|
53 |
+
while not done:
|
54 |
+
action = np.argmax(Q[state, :] + np.random.randn(1, env.action_space.n) * (1.0 / (ep + 1)))
|
55 |
+
new_state, reward, done, _, _ = env.step(action)
|
56 |
+
Q[state, action] += learning_rate * (reward + discount_factor * np.max(Q[new_state, :]) - Q[state, action])
|
57 |
+
state = new_state
|
58 |
|
59 |
+
return "π§ RL training complete! Agent learned to navigate FrozenLake."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
# UI Layout (no background CSS for white theme)
|
62 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
63 |
+
with gr.Tab("Eternos Debugger"):
|
64 |
+
gr.Markdown("## βοΈ Eternos β AI Code Debugger")
|
65 |
+
gr.Markdown("Supports Python, C, C++, JavaScript β powered by CodeT5p (Fast Edition)")
|
66 |
|
67 |
+
with gr.Row():
|
68 |
+
code_input = gr.Textbox(label="π Your Code", lines=12)
|
69 |
+
error_input = gr.Textbox(label="β οΈ Error Message (optional)", lines=4)
|
70 |
|
71 |
+
language_input = gr.Dropdown(["Python", "C", "C++", "JavaScript"], label="π Language", value="Python")
|
72 |
+
output_code = gr.Code(label="β
Suggested Fix")
|
73 |
+
run_btn = gr.Button("π οΈ Fix Code")
|
74 |
+
|
75 |
+
run_btn.click(fn=eternos_debugger, inputs=[code_input, error_input, language_input], outputs=output_code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
with gr.Tab("Reinforcement Learning Demo"):
|
78 |
+
gr.Markdown("## π€ Reinforcement Learning Example")
|
79 |
+
gr.Markdown("Simulates a Q-learning agent on FrozenLake.")
|
80 |
+
rl_output = gr.Textbox(label="π Output", lines=4)
|
81 |
+
rl_btn = gr.Button("π Run RL Simulation")
|
82 |
+
rl_btn.click(fn=rl_simulation, inputs=[], outputs=rl_output)
|
83 |
|
84 |
+
demo.launch()
|
|