Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
|
5 |
-
#
|
6 |
-
model_name = "Salesforce/codet5p-
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
9 |
-
model_name,
|
10 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
11 |
-
)
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
model.to(device)
|
14 |
|
15 |
-
#
|
16 |
language_prompts = {
|
17 |
"Python": "Fix this Python code:\n",
|
18 |
"C": "Fix this C code:\n",
|
@@ -20,65 +31,35 @@ language_prompts = {
|
|
20 |
"JavaScript": "Fix this JavaScript code:\n"
|
21 |
}
|
22 |
|
23 |
-
#
|
24 |
def eternos_debugger(code, error, language):
|
25 |
if not code.strip():
|
26 |
return "β Please provide code."
|
|
|
27 |
prompt = f"{language_prompts[language]}{code}\nError:\n{error}\nCorrected code:\n"
|
28 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(device)
|
29 |
outputs = model.generate(
|
30 |
**inputs,
|
31 |
-
max_new_tokens=
|
32 |
-
temperature=0.
|
33 |
-
do_sample=False
|
34 |
-
pad_token_id=tokenizer.pad_token_id or tokenizer.eos_token_id
|
35 |
)
|
36 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
37 |
return response.strip()
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
env = gym.make("FrozenLake-v1", is_slippery=False)
|
45 |
-
Q = np.zeros([env.observation_space.n, env.action_space.n])
|
46 |
-
episodes = 500
|
47 |
-
learning_rate = 0.8
|
48 |
-
discount_factor = 0.95
|
49 |
-
|
50 |
-
for ep in range(episodes):
|
51 |
-
state = env.reset()[0]
|
52 |
-
done = False
|
53 |
-
while not done:
|
54 |
-
action = np.argmax(Q[state, :] + np.random.randn(1, env.action_space.n) * (1.0 / (ep + 1)))
|
55 |
-
new_state, reward, done, _, _ = env.step(action)
|
56 |
-
Q[state, action] += learning_rate * (reward + discount_factor * np.max(Q[new_state, :]) - Q[state, action])
|
57 |
-
state = new_state
|
58 |
-
|
59 |
-
return "π§ RL training complete! Agent learned to navigate FrozenLake."
|
60 |
-
|
61 |
-
# UI Layout (no background CSS for white theme)
|
62 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
63 |
-
with gr.Tab("Eternos Debugger"):
|
64 |
-
gr.Markdown("## βοΈ Eternos β AI Code Debugger")
|
65 |
-
gr.Markdown("Supports Python, C, C++, JavaScript β powered by CodeT5p (Fast Edition)")
|
66 |
-
|
67 |
-
with gr.Row():
|
68 |
-
code_input = gr.Textbox(label="π Your Code", lines=12)
|
69 |
-
error_input = gr.Textbox(label="β οΈ Error Message (optional)", lines=4)
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
|
75 |
-
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
gr.Markdown("## π€ Reinforcement Learning Example")
|
79 |
-
gr.Markdown("Simulates a Q-learning agent on FrozenLake.")
|
80 |
-
rl_output = gr.Textbox(label="π Output", lines=4)
|
81 |
-
rl_btn = gr.Button("π Run RL Simulation")
|
82 |
-
rl_btn.click(fn=rl_simulation, inputs=[], outputs=rl_output)
|
83 |
|
84 |
demo.launch()
|
|
|
1 |
+
# Copyright (c) 2008-2021, Hazelcast, Inc. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
import gradio as gr
|
16 |
import torch
|
17 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
18 |
|
19 |
+
# Model configuration
|
20 |
+
model_name = "Salesforce/codet5p-770m"
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
|
|
|
|
|
23 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
model.to(device)
|
25 |
|
26 |
+
# Prompts for different languages
|
27 |
language_prompts = {
|
28 |
"Python": "Fix this Python code:\n",
|
29 |
"C": "Fix this C code:\n",
|
|
|
31 |
"JavaScript": "Fix this JavaScript code:\n"
|
32 |
}
|
33 |
|
34 |
+
# Debugging logic
|
35 |
def eternos_debugger(code, error, language):
|
36 |
if not code.strip():
|
37 |
return "β Please provide code."
|
38 |
+
|
39 |
prompt = f"{language_prompts[language]}{code}\nError:\n{error}\nCorrected code:\n"
|
40 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(device)
|
41 |
outputs = model.generate(
|
42 |
**inputs,
|
43 |
+
max_new_tokens=256,
|
44 |
+
temperature=0.2,
|
45 |
+
do_sample=False
|
|
|
46 |
)
|
47 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
return response.strip()
|
49 |
|
50 |
+
# UI setup
|
51 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {background-color: #cbedec;}") as demo:
|
52 |
+
gr.Markdown("## βοΈ Eternos β AI Code Debugger")
|
53 |
+
gr.Markdown("Supports Python, C, C++, JavaScript β powered by CodeT5p")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
with gr.Row():
|
56 |
+
code_input = gr.Textbox(label="π Your Code", lines=12)
|
57 |
+
error_input = gr.Textbox(label="β οΈ Error Message (optional)", lines=4)
|
58 |
|
59 |
+
language_input = gr.Dropdown(["Python", "C", "C++", "JavaScript"], label="π Language", value="Python")
|
60 |
+
output_code = gr.Code(label="β
Suggested Fix")
|
61 |
+
run_btn = gr.Button("π οΈ Fix Code")
|
62 |
|
63 |
+
run_btn.click(fn=eternos_debugger, inputs=[code_input, error_input, language_input], outputs=output_code)
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
demo.launch()
|