Tanvir1337's picture
init app.py
712be77 verified
from huggingface_hub import HfApi, HfFileSystem
import re
from tqdm import tqdm
import concurrent.futures
import gradio as gr
import datetime
import pandas as pd
import os
import threading
import time
HF_TOKEN = os.getenv('HF_TOKEN')
api = HfApi()
fs = HfFileSystem()
def restart_space():
time.sleep(36000)
api.restart_space(repo_id="Tanvir1337/lonestriker-quantized-models", token=HF_TOKEN)
text = f"""
🎯 The Leaderboard aims to track lonestriker's exl2 quantized models.
## πŸ› οΈ Backend
The leaderboard's backend mainly runs on the [Hugging Face Hub API](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api).
## πŸ” Searching
You can search for author or a specific model using the search bar.
## βŒ› Last Update
This space is last updated in **{str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M"))}**.
## πŸ“’ Important Note
This space potentially includes incorrectly quantized models for a model.
If you find any incorrectly quantized model, please report it to me.
"""
quant_models = [i.__dict__['id'] for i in api.list_models(author="lonestriker") if "exl2" in i.__dict__['id']]
pattern = r'\(https://huggingface\.co/([^/]+)/([^/]+)\)'
liste = {}
def process_model(i, pattern, liste):
text = fs.read_text(i + "/README.md")
matches = re.search(pattern, text)
if matches:
author = matches.group(1)
model_name = matches.group(2)
full_id = (author + "/" + model_name).split(")")[0]
try:
liste[full_id].append(i)
except KeyError:
liste[full_id] = [i]
num_threads = 64
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
futures = []
for i in quant_models:
future = executor.submit(process_model, i, pattern, liste)
futures.append(future)
concurrent.futures.wait(futures)
authors, models, exl2 = [], [], []
for model, values in liste.items():
models.append(model)
exl2_value = None
for value in values:
if "-exl2" in value:
exl2_value = value
authors.append(model.split('/')[0])
exl2.append(exl2_value)
df = pd.DataFrame({'πŸ‘€ Author Name': authors, 'πŸ€– Model Name': models, 'πŸ“₯ EXL2': exl2})
def search(search_text):
if not search_text:
return df
if len(search_text.split('/'))>1:
return df[df['πŸ€– Model Name'] == clickable(search_text)]
else:
return df[df['πŸ‘€ Author Name'] == clickable(search_text)]
def clickable(x):
return None if not x else f'<a target="_blank" href="https://huggingface.co/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
def to_clickable(df):
for column in list(df.columns):
df[column] = df[column].apply(lambda x: clickable(x))
return df
with gr.Blocks() as demo:
gr.Markdown("""<center><img src = "https://huggingface.co/avatars/f18351bc5ce9c106ba74523d9a55567c.svg" width=200 height=200></center>""")
gr.Markdown("""<h1 align="center" id="space-title">lonestriker Quantized Models</h1>""")
gr.Markdown(text)
with gr.Column(min_width=320):
search_bar = gr.Textbox(placeholder="πŸ” Search for a author or a specific model", show_label=False)
df_clickable = to_clickable(df)
gr_df = gr.Dataframe(df_clickable, interactive=False, datatype=["markdown"]*len(df.columns))
search_bar.submit(fn=search, inputs=search_bar, outputs=gr_df)
threading.Thread(target=restart_space).start()
demo.launch()