Spaces:
Runtime error
Runtime error
RyanMullins
commited on
Commit
Β·
d0eb7f5
1
Parent(s):
fed0a26
Docs for the Space
Browse files- app.py +93 -13
- requirements.txt +1 -1
app.py
CHANGED
@@ -145,7 +145,7 @@ with gr.Blocks() as demo:
|
|
145 |
detectors, and the [SynthID Text documentaiton][raitk-synthid] for more on
|
146 |
how this technology works.
|
147 |
|
148 |
-
##
|
149 |
|
150 |
Practically speaking, SynthID Text is a logits processor, applied to your
|
151 |
model's generation pipeline after [Top-K and Top-P][cloud-parameter-values],
|
@@ -169,10 +169,13 @@ with gr.Blocks() as demo:
|
|
169 |
`.generate()`, as shown in the snippet below.
|
170 |
|
171 |
```python
|
172 |
-
from transformers import
|
173 |
-
|
|
|
|
|
|
|
174 |
|
175 |
-
# Standard model and
|
176 |
tokenizer = AutoTokenizer.from_pretrained('repo/id')
|
177 |
model = AutoModelForCausalLM.from_pretrained('repo/id')
|
178 |
|
@@ -189,13 +192,20 @@ with gr.Blocks() as demo:
|
|
189 |
watermarked_text = tokenizer.batch_decode(output_sequences)
|
190 |
```
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
[cloud-parameter-values]: https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/adjust-parameter-values
|
197 |
[gemma]: https://huggingface.co/google/gemma-2b
|
198 |
-
[raitk-synthid]: /responsible/docs/safeguards/synthid
|
199 |
[synthid]: https://deepmind.google/technologies/synthid/
|
200 |
[synthid-hf-config]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/configuration_utils.py
|
201 |
[synthid-hf-detector]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/watermarking.py
|
@@ -213,7 +223,21 @@ with gr.Blocks() as demo:
|
|
213 |
with gr.Column(visible=False) as generations_col:
|
214 |
gr.Markdown(
|
215 |
'''
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
'''
|
218 |
)
|
219 |
generations_grp = gr.CheckboxGroup(
|
@@ -225,7 +249,23 @@ with gr.Blocks() as demo:
|
|
225 |
with gr.Column(visible=False) as detections_col:
|
226 |
gr.Markdown(
|
227 |
'''
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
'''
|
230 |
)
|
231 |
revealed_grp = gr.CheckboxGroup(
|
@@ -235,7 +275,26 @@ with gr.Blocks() as demo:
|
|
235 |
'marked as correct or incorrect in the text.'
|
236 |
),
|
237 |
)
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
def generate(*prompts):
|
241 |
standard, standard_detector = generate_outputs(prompts=prompts)
|
@@ -295,7 +354,7 @@ with gr.Blocks() as demo:
|
|
295 |
reveal_btn: gr.Button(visible=False),
|
296 |
detections_col: gr.Column(visible=True),
|
297 |
revealed_grp: gr.CheckboxGroup(choices=choices, value=value),
|
298 |
-
|
299 |
}
|
300 |
|
301 |
reveal_btn.click(
|
@@ -305,7 +364,28 @@ with gr.Blocks() as demo:
|
|
305 |
reveal_btn,
|
306 |
detections_col,
|
307 |
revealed_grp,
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
],
|
310 |
)
|
311 |
|
|
|
145 |
detectors, and the [SynthID Text documentaiton][raitk-synthid] for more on
|
146 |
how this technology works.
|
147 |
|
148 |
+
## Applying a watermark
|
149 |
|
150 |
Practically speaking, SynthID Text is a logits processor, applied to your
|
151 |
model's generation pipeline after [Top-K and Top-P][cloud-parameter-values],
|
|
|
169 |
`.generate()`, as shown in the snippet below.
|
170 |
|
171 |
```python
|
172 |
+
from transformers import (
|
173 |
+
AutoModelForCausalLM,
|
174 |
+
AutoTokenizer,
|
175 |
+
SynthIDTextWatermarkingConfig,
|
176 |
+
)
|
177 |
|
178 |
+
# Standard model and tokenizer initialization
|
179 |
tokenizer = AutoTokenizer.from_pretrained('repo/id')
|
180 |
model = AutoModelForCausalLM.from_pretrained('repo/id')
|
181 |
|
|
|
192 |
watermarked_text = tokenizer.batch_decode(output_sequences)
|
193 |
```
|
194 |
|
195 |
+
## Try it yourself.
|
196 |
+
|
197 |
+
Lets use [Gemma 2B IT][gemma] to help you understand how watermarking works.
|
198 |
+
|
199 |
+
Using the text boxes below enter up to three prompts then click the generate
|
200 |
+
button. Some examples are provided to help get you started, but they are
|
201 |
+
fully editable.
|
202 |
+
|
203 |
+
Gemma will then generate watermarked and non-watermarked repsonses for each
|
204 |
+
non-empty prompt you provided.
|
205 |
|
206 |
[cloud-parameter-values]: https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/adjust-parameter-values
|
207 |
[gemma]: https://huggingface.co/google/gemma-2b
|
208 |
+
[raitk-synthid]: https://ai.google.dev/responsible/docs/safeguards/synthid-text
|
209 |
[synthid]: https://deepmind.google/technologies/synthid/
|
210 |
[synthid-hf-config]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/configuration_utils.py
|
211 |
[synthid-hf-detector]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/watermarking.py
|
|
|
223 |
with gr.Column(visible=False) as generations_col:
|
224 |
gr.Markdown(
|
225 |
'''
|
226 |
+
## Human recognition of watermarked text
|
227 |
+
|
228 |
+
The primary goal of SynthID Text is to apply a watermark to generated text
|
229 |
+
wihtout affecting generation quality. Another way to think about this is
|
230 |
+
that generated text that carries a watermark should be imperceptible to
|
231 |
+
you, the reader, but easily perceived by a watermark detector.
|
232 |
+
|
233 |
+
The responses from Gemma are shown below. Use the checkboxes to mark which
|
234 |
+
responses you think are the watermarked, then click the "reveal" button to
|
235 |
+
see the true values.
|
236 |
+
|
237 |
+
The [research paper][synthid-nature] has an in-depth study examining human
|
238 |
+
perception of watermared versus non-watermarked text.
|
239 |
+
|
240 |
+
[synthid-nature]: https://www.nature.com/articles/s41586-024-08025-4
|
241 |
'''
|
242 |
)
|
243 |
generations_grp = gr.CheckboxGroup(
|
|
|
249 |
with gr.Column(visible=False) as detections_col:
|
250 |
gr.Markdown(
|
251 |
'''
|
252 |
+
## Detecting watermarked text
|
253 |
+
|
254 |
+
The only way to properly detect watermarked text is with a trained
|
255 |
+
classifier. This Space uses a pre-trained classifier hosted on Huggin Face
|
256 |
+
Hub. For production uses you will need to train your own classifiers to
|
257 |
+
recognize your watermarks. A [Bayesian detector][synthid-hf-detector] is
|
258 |
+
provided in Transformers, along with an
|
259 |
+
[end-to-end example][synthid-hf-detector-e2e] of how to train one of these
|
260 |
+
detectors.
|
261 |
+
|
262 |
+
You can see how your guesses compared to the actaul results below. As
|
263 |
+
above, the responses are displayed in checkboxes. If the box is checked,
|
264 |
+
then the text carries a watermark. Your correct guesses are annotated with
|
265 |
+
the "Correct" prefix.
|
266 |
+
|
267 |
+
[synthid-hf-detector]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/watermarking.py
|
268 |
+
[synthid-hf-detector-e2e]: https://github.com/huggingface/transformers/blob/v4.46.0/examples/research_projects/synthid_text/detector_bayesian.py
|
269 |
'''
|
270 |
)
|
271 |
revealed_grp = gr.CheckboxGroup(
|
|
|
275 |
'marked as correct or incorrect in the text.'
|
276 |
),
|
277 |
)
|
278 |
+
gr.Markdown(
|
279 |
+
'''
|
280 |
+
## Limitations
|
281 |
+
|
282 |
+
SynthID Text watermarks are robust to some transformations, such as
|
283 |
+
cropping pieces of text, modifying a few words, or mild paraphrasing, but
|
284 |
+
this method does have limitations.
|
285 |
+
|
286 |
+
- Watermark application is less effective on factual responses, as there
|
287 |
+
is less opportunity to augment generation without decreasing accuracy.
|
288 |
+
- Detector confidence scores can be greatly reduced when an AI-generated
|
289 |
+
text is thoroughly rewritten, or translated to another language.
|
290 |
+
|
291 |
+
SynthID Text is not built to directly stop motivated adversaries from
|
292 |
+
causing harm. However, it can make it harder to use AI-generated content
|
293 |
+
for malicious purposes, and it can be combined with other approaches to
|
294 |
+
give better coverage across content types and platforms.
|
295 |
+
'''
|
296 |
+
)
|
297 |
+
reset_btn = gr.Button('Reset', visible=False)
|
298 |
|
299 |
def generate(*prompts):
|
300 |
standard, standard_detector = generate_outputs(prompts=prompts)
|
|
|
354 |
reveal_btn: gr.Button(visible=False),
|
355 |
detections_col: gr.Column(visible=True),
|
356 |
revealed_grp: gr.CheckboxGroup(choices=choices, value=value),
|
357 |
+
reset_btn: gr.Button(visible=True),
|
358 |
}
|
359 |
|
360 |
reveal_btn.click(
|
|
|
364 |
reveal_btn,
|
365 |
detections_col,
|
366 |
revealed_grp,
|
367 |
+
reset_btn
|
368 |
+
],
|
369 |
+
)
|
370 |
+
|
371 |
+
def reset():
|
372 |
+
return {
|
373 |
+
generations_col: gr.Column(visible=False),
|
374 |
+
detections_col: gr.Column(visible=False),
|
375 |
+
revealed_grp: gr.CheckboxGroup(visible=False),
|
376 |
+
reset_btn: gr.Button(visible=False),
|
377 |
+
generate_btn: gr.Button(visible=True),
|
378 |
+
}
|
379 |
+
|
380 |
+
reset_btn.click(
|
381 |
+
reset,
|
382 |
+
inputs=[],
|
383 |
+
outputs=[
|
384 |
+
generations_col,
|
385 |
+
detections_col,
|
386 |
+
revealed_grp,
|
387 |
+
reset_btn,
|
388 |
+
generate_btn,
|
389 |
],
|
390 |
)
|
391 |
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
gradio
|
2 |
spaces
|
3 |
-
transformers
|
4 |
|
5 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
6 |
torch
|
|
|
1 |
gradio
|
2 |
spaces
|
3 |
+
transformers @ git+https://github.com/sumedhghaisas2/transformers_private
|
4 |
|
5 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
6 |
torch
|