import cv2 import numpy as np import torch from fastapi import FastAPI, UploadFile, File from PIL import Image from TranSalNet_Res import TranSalNet from utils.data_process import preprocess_img, postprocess_img app = FastAPI() device = torch.device('cpu') model = TranSalNet() model.load_state_dict(torch.load('pretrained_models/TranSalNet_Res.pth', map_location=torch.device('cpu'))) model.to(device) model.eval() def count_and_label_red_patches(heatmap, threshold=200): red_mask = heatmap[:, :, 2] > threshold contours, _ = cv2.findContours(red_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Sort the contours based on their areas in descending order contours = sorted(contours, key=cv2.contourArea, reverse=True) original_image = np.array(image) centroid_list = [] # List to store the centroids of the contours in order for i, contour in enumerate(contours, start=1): # Compute the centroid of the current contour M = cv2.moments(contour) if M["m00"] != 0: cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) else: cX, cY = 0, 0 radius = 20 # Adjust the circle radius to fit the numbers circle_color = (0, 0, 0) # Blue color cv2.circle(original_image, (cX, cY), radius, circle_color, -1) # Draw blue circle font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 1 font_color = (255, 255, 255) line_type = cv2.LINE_AA cv2.putText(original_image, str(i), (cX - 10, cY + 10), font, font_scale, font_color, 2, line_type) centroid_list.append((cX, cY)) # Add the centroid to the list # Connect the red spots in the desired order for i in range(len(centroid_list) - 1): start_point = centroid_list[i] end_point = centroid_list[i + 1] line_color = (0, 0, 0) # Red color cv2.line(original_image, start_point, end_point, line_color, 2) return original_image, len(contours) def process_image(image: Image.Image) -> np.ndarray: img = image.resize((384, 288)) img = np.array(img) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # Convert to BGR color space img = np.array(img) / 255. img = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0) img = torch.from_numpy(img) img = img.type(torch.FloatTensor).to(device) pred_saliency = model(img).squeeze().detach().numpy() heatmap = (pred_saliency * 255).astype(np.uint8) heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) # Use a blue colormap (JET) heatmap = cv2.resize(heatmap, (image.width, image.height)) enhanced_image = np.array(image) b, g, r = cv2.split(enhanced_image) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) b_enhanced = clahe.apply(b) enhanced_image = cv2.merge((b_enhanced, g, r)) alpha = 0.7 blended_img = cv2.addWeighted(enhanced_image, 1 - alpha, heatmap, alpha, 0) original_image, num_red_patches = count_and_label_red_patches(heatmap) # Save processed image (optional) cv2.imwrite('example/result15.png', blended_img, [int(cv2.IMWRITE_JPEG_QUALITY), 200]) return blended_img @app.post("/process_image") async def process_uploaded_image(file: UploadFile = File(...)): try: contents = await file.read() image = Image.open(io.BytesIO(contents)) except Exception as e: raise HTTPException(status_code=400, detail=f"Error opening image: {str(e)}") try: processed_image = process_image(image) return StreamingResponse(io.BytesIO(cv2.imencode('.png', processed_image)[1].tobytes()), media_type="image/png") except Exception as e: raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")