import streamlit as st from PIL import Image import torch from torchvision import transforms from transformers import AutoModelForImageSegmentation import io import os # Set matmul precision (important for performance on some systems) torch.set_float32_matmul_precision(["high", "highest"][0]) # Load the model (outside the function for efficiency) @st.cache_resource # Cache the model to avoid reloading on every run def load_model(): model = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet", trust_remote_code=True) model.to("cuda" if torch.cuda.is_available() else "cpu") # Use CUDA if available return model birefnet = load_model() # Image transformation transform_image = transforms.Compose([ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) @st.cache_data # Cache the processed images. def process(image): image_size = image.size input_images = transform_image(image).unsqueeze(0).to("cuda" if torch.cuda.is_available() else "cpu") with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) image.putalpha(mask) return image def process_file(uploaded_file): try: image = Image.open(uploaded_file).convert("RGB") transparent = process(image) # Convert to bytes for download img_bytes = io.BytesIO() transparent.save(img_bytes, format="PNG") img_bytes = img_bytes.getvalue() return img_bytes, transparent # Return bytes for download and PIL image for display except Exception as e: st.error(f"An error occurred: {e}") return None, None st.title("Background Removal Tool") # Tabs for different input methods tabs = ["Image Upload", "URL Input", "File Output"] selected_tab = st.sidebar.radio("Select Input Method", tabs) if selected_tab == "Image Upload": uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file).convert("RGB") processed_image = process(image) st.image(processed_image, caption="Processed Image") elif selected_tab == "URL Input": image_url = st.text_input("Paste an image URL") if image_url: try: import requests from io import BytesIO response = requests.get(image_url, stream=True) response.raise_for_status() # Raise an exception for bad status codes image = Image.open(BytesIO(response.content)).convert("RGB") processed_image = process(image) st.image(processed_image, caption="Processed Image from URL") except requests.exceptions.RequestException as e: st.error(f"Error fetching image from URL: {e}") except Exception as e: st.error(f"Error processing image: {e}") elif selected_tab == "File Output": uploaded_file = st.file_uploader("Upload an image for file output", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: file_bytes, processed_image = process_file(uploaded_file) if file_bytes: st.image(processed_image, caption="Processed Image") # Display the image st.download_button( label="Download PNG", data=file_bytes, file_name=f"{uploaded_file.name.rsplit('.', 1)[0]}.png", mime="image/png", )