Added app.py and requirements.txt for the Image Captioning project
Browse files- app.py +81 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries and modules
|
2 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration, MBartForConditionalGeneration, MBart50Tokenizer
|
3 |
+
from gtts import gTTS
|
4 |
+
from PIL import Image
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Pipeline Component 1: Image Captioning Model
|
8 |
+
class ImageToText:
|
9 |
+
def __init__(self):
|
10 |
+
"""Initializes the BLIP model for image captioning."""
|
11 |
+
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
12 |
+
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
13 |
+
print("BLIP Image Captioning Model Loaded")
|
14 |
+
|
15 |
+
def generate_caption(self, img):
|
16 |
+
"""Generates a caption for the given image."""
|
17 |
+
inputs = self.processor(images=img, return_tensors="pt")
|
18 |
+
generated_ids = self.model.generate(**inputs)
|
19 |
+
caption = self.processor.decode(generated_ids[0], skip_special_tokens=True)
|
20 |
+
return caption
|
21 |
+
|
22 |
+
# Pipeline Component 2: Arabic Translation Model (mBART)
|
23 |
+
class ArabicTranslator:
|
24 |
+
def __init__(self):
|
25 |
+
"""Initializes the mBART model for English to Arabic translation."""
|
26 |
+
self.tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
27 |
+
self.model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
28 |
+
print("mBART Arabic Translation Model Loaded")
|
29 |
+
|
30 |
+
def translate(self, text):
|
31 |
+
"""Translates the given English text to Arabic."""
|
32 |
+
inputs = self.tokenizer(text, return_tensors="pt", src_lang="en_XX")
|
33 |
+
translated = self.model.generate(inputs["input_ids"], forced_bos_token_id=self.tokenizer.lang_code_to_id["ar_AR"])
|
34 |
+
translated_text = self.tokenizer.batch_decode(translated, skip_special_tokens=True)[0]
|
35 |
+
return translated_text
|
36 |
+
|
37 |
+
# Pipeline Component 3: Text-to-Speech Model (gTTS)
|
38 |
+
class TextToSpeech:
|
39 |
+
def __init__(self, lang='ar'):
|
40 |
+
"""Initializes the Text-to-Speech system for Arabic."""
|
41 |
+
self.lang = lang
|
42 |
+
|
43 |
+
def generate_audio(self, text):
|
44 |
+
"""Generates audio from the given Arabic text."""
|
45 |
+
tts = gTTS(text=text, lang=self.lang, slow=False)
|
46 |
+
audio_file_path = 'output.mp3'
|
47 |
+
tts.save(audio_file_path)
|
48 |
+
return audio_file_path
|
49 |
+
|
50 |
+
# Main Pipeline Integration
|
51 |
+
class ImageToArabicSpeechPipeline:
|
52 |
+
def __init__(self):
|
53 |
+
"""Initializes all pipeline components."""
|
54 |
+
self.caption_model = ImageToText()
|
55 |
+
self.translation_model = ArabicTranslator()
|
56 |
+
self.tts_model = TextToSpeech()
|
57 |
+
|
58 |
+
def process_image(self, img):
|
59 |
+
"""Processes the image, generates a caption, translates it to Arabic, and converts it to speech."""
|
60 |
+
caption = self.caption_model.generate_caption(img)
|
61 |
+
translated_text = self.translation_model.translate(caption)
|
62 |
+
audio_file = self.tts_model.generate_audio(translated_text)
|
63 |
+
return caption, translated_text, audio_file
|
64 |
+
|
65 |
+
# Gradio Interface Setup
|
66 |
+
def demo(image):
|
67 |
+
"""Function to be used in Gradio for processing the image and returning caption, translation, and audio."""
|
68 |
+
img = Image.open(image)
|
69 |
+
pipeline = ImageToArabicSpeechPipeline()
|
70 |
+
caption, translated_text, audio_file = pipeline.process_image(img)
|
71 |
+
return caption, translated_text, audio_file
|
72 |
+
|
73 |
+
# Define Gradio Interface
|
74 |
+
iface = gr.Interface(
|
75 |
+
fn=demo,
|
76 |
+
inputs=gr.Image(type="filepath"),
|
77 |
+
outputs=[gr.Textbox(label="Caption"), gr.Textbox(label="Translated Text"), gr.Audio(label="Generated Speech")]
|
78 |
+
)
|
79 |
+
|
80 |
+
# Launch the Gradio Interface
|
81 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gtts
|
2 |
+
gradio
|
3 |
+
transformers
|