from fastai.vision.all import * | |
import gradio as gr | |
# import pathlib | |
# temp = pathlib.PosixPath | |
# pathlib.PosixPath = pathlib.WindowsPath | |
#!export | |
pollutant_labels = ( | |
"antennas", | |
"billboard", | |
"broken roads", | |
"construction sites", | |
"electric pole", | |
"garbage can", | |
"graffiti", | |
"smog", | |
"street litter" | |
) | |
model = load_learner('vispol-1-recognizer-v0.pkl') | |
def recognize_image(image): | |
pred, idx, probs = model.predict(image) | |
return dict(zip(pollutant_labels, map(float, probs))) | |
#!export | |
image = gr.inputs.Image(shape=(256,256)) | |
label = gr.outputs.Label(num_top_classes=5) | |
examples = [ | |
'unknown_00.jpg', | |
'unknown_01.jpg', | |
'unknown_02.jpg', | |
'unknown_03.jpg', | |
'unknown_04.jpg' | |
] | |
iface = gr.Interface(fn=recognize_image, inputs=image, outputs=label, examples=examples) | |
iface.launch(inline=False) |