from fastai.vision.all import * import gradio as gr # import pathlib # temp = pathlib.PosixPath # pathlib.PosixPath = pathlib.WindowsPath #!export pollutant_labels = ( "antennas", "billboard", "broken roads", "construction sites", "electric pole", "garbage can", "graffiti", "smog", "street litter" ) model = load_learner('vispol-1-recognizer-v0.pkl') def recognize_image(image): pred, idx, probs = model.predict(image) return dict(zip(pollutant_labels, map(float, probs))) #!export image = gr.inputs.Image(shape=(256,256)) label = gr.outputs.Label(num_top_classes=5) examples = [ 'unknown_00.jpg', 'unknown_01.jpg', 'unknown_02.jpg', 'unknown_03.jpg', 'unknown_04.jpg' ] iface = gr.Interface(fn=recognize_image, inputs=image, outputs=label, examples=examples) iface.launch(inline=False)