Spaces:
Running
Running
Update index.html
Browse files- index.html +141 -16
index.html
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
<html>
|
3 |
<head>
|
4 |
<title>Cancer Game Theory</title>
|
|
|
5 |
<style>
|
6 |
body {
|
7 |
font-family: Arial, sans-serif;
|
@@ -33,6 +34,8 @@
|
|
33 |
}
|
34 |
.rules ul {
|
35 |
line-height: 1.6;
|
|
|
|
|
36 |
}
|
37 |
canvas {
|
38 |
border: 2px solid #1e3799;
|
@@ -71,28 +74,52 @@
|
|
71 |
button:hover {
|
72 |
background-color: #0c2461;
|
73 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
</style>
|
75 |
</head>
|
76 |
<body>
|
77 |
<div class="header">
|
78 |
-
<h1>Cancer Game Theory</h1>
|
79 |
</div>
|
80 |
|
81 |
<div class="rules">
|
82 |
<h2>Simulation Rules</h2>
|
83 |
<ul>
|
84 |
-
<li
|
85 |
-
<li
|
86 |
-
<li
|
87 |
-
<li
|
88 |
-
<li
|
89 |
-
<li
|
90 |
</ul>
|
91 |
</div>
|
92 |
|
93 |
<div class="controls">
|
94 |
<h2>Simulation Parameters</h2>
|
95 |
<div class="param-group">
|
|
|
96 |
<label>Initial Healthy: <input type="number" id="initialHealthy" value="15" min="1"></label>
|
97 |
<label>Initial Cancer: <input type="number" id="initialCancer" value="8" min="1"></label>
|
98 |
<label>Mutation Rate: <input type="number" id="mutationRate" value="0.1" step="0.01" min="0"></label>
|
@@ -107,6 +134,27 @@
|
|
107 |
Healthy: <span id="healthyCount">0</span> |
|
108 |
Cancer: <span id="cancerCount">0</span>
|
109 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
</div>
|
111 |
|
112 |
<canvas id="simCanvas" width="800" height="500"></canvas>
|
@@ -124,6 +172,9 @@
|
|
124 |
let generation = 1;
|
125 |
let frameCount = 0;
|
126 |
const cellRadius = 5;
|
|
|
|
|
|
|
127 |
|
128 |
function getNormal(mean = 0, std = 1) {
|
129 |
let u, v, s;
|
@@ -138,6 +189,9 @@
|
|
138 |
|
139 |
class NeuralNetwork {
|
140 |
constructor(parent = null) {
|
|
|
|
|
|
|
141 |
if(parent) {
|
142 |
this.weights1 = parent.weights1.map(row =>
|
143 |
row.map(w => w + getNormal(0, parseFloat(document.getElementById('mutationRate').value)))
|
@@ -146,15 +200,15 @@
|
|
146 |
row.map(w => w + getNormal(0, parseFloat(document.getElementById('mutationRate').value)))
|
147 |
);
|
148 |
} else {
|
149 |
-
this.weights1 = Array.from({length:
|
150 |
-
Array.from({length:
|
151 |
-
this.weights2 = Array.from({length:
|
152 |
-
Array.from({length:
|
153 |
}
|
154 |
}
|
155 |
|
156 |
activate(x) {
|
157 |
-
return x;
|
158 |
}
|
159 |
|
160 |
predict(inputs) {
|
@@ -177,6 +231,7 @@
|
|
177 |
this.y = parent ?
|
178 |
parent.y + (Math.random() * 40 - 20) :
|
179 |
Math.random() * canvas.height;
|
|
|
180 |
}
|
181 |
|
182 |
getNearbyCells() {
|
@@ -200,17 +255,16 @@
|
|
200 |
|
201 |
const [vx, vy] = this.brain.predict(inputs);
|
202 |
|
203 |
-
// Unlimited speed based on neural network output
|
204 |
this.x += vx;
|
205 |
this.y += vy;
|
|
|
206 |
|
207 |
-
// Cancer cells get inherent speed boost
|
208 |
if(this.type === 'cancer') {
|
209 |
-
this.x += vx * 0.5;
|
210 |
this.y += vy * 0.5;
|
|
|
211 |
}
|
212 |
|
213 |
-
// Wrap around edges
|
214 |
this.x = (this.x + canvas.width) % canvas.width;
|
215 |
this.y = (this.y + canvas.height) % canvas.height;
|
216 |
}
|
@@ -223,6 +277,72 @@
|
|
223 |
}
|
224 |
}
|
225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
function checkCollisions() {
|
227 |
cells.forEach((cell, i) => {
|
228 |
if(cell.type === 'cancer') {
|
@@ -277,6 +397,7 @@
|
|
277 |
generation++;
|
278 |
reproduceCells();
|
279 |
updateStatus();
|
|
|
280 |
}
|
281 |
|
282 |
cells.forEach(cell => cell.update());
|
@@ -296,6 +417,8 @@
|
|
296 |
generation = 1;
|
297 |
frameCount = 0;
|
298 |
cells = [];
|
|
|
|
|
299 |
|
300 |
const initialHealthy = parseInt(document.getElementById('initialHealthy').value);
|
301 |
const initialCancer = parseInt(document.getElementById('initialCancer').value);
|
@@ -304,6 +427,8 @@
|
|
304 |
for(let i = 0; i < initialCancer; i++) cells.push(new Cell('cancer'));
|
305 |
|
306 |
updateStatus();
|
|
|
|
|
307 |
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
308 |
cells.forEach(cell => cell.draw());
|
309 |
});
|
|
|
2 |
<html>
|
3 |
<head>
|
4 |
<title>Cancer Game Theory</title>
|
5 |
+
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
|
6 |
<style>
|
7 |
body {
|
8 |
font-family: Arial, sans-serif;
|
|
|
34 |
}
|
35 |
.rules ul {
|
36 |
line-height: 1.6;
|
37 |
+
list-style-type: none;
|
38 |
+
padding-left: 0;
|
39 |
}
|
40 |
canvas {
|
41 |
border: 2px solid #1e3799;
|
|
|
74 |
button:hover {
|
75 |
background-color: #0c2461;
|
76 |
}
|
77 |
+
.data-panel {
|
78 |
+
display: grid;
|
79 |
+
grid-template-columns: 1fr 1fr;
|
80 |
+
gap: 20px;
|
81 |
+
margin-top: 20px;
|
82 |
+
}
|
83 |
+
.generations-table {
|
84 |
+
max-height: 300px;
|
85 |
+
overflow-y: auto;
|
86 |
+
}
|
87 |
+
table {
|
88 |
+
width: 100%;
|
89 |
+
border-collapse: collapse;
|
90 |
+
}
|
91 |
+
th, td {
|
92 |
+
padding: 8px;
|
93 |
+
text-align: left;
|
94 |
+
border-bottom: 1px solid #ddd;
|
95 |
+
}
|
96 |
+
th {
|
97 |
+
background-color: #1e3799;
|
98 |
+
color: white;
|
99 |
+
}
|
100 |
</style>
|
101 |
</head>
|
102 |
<body>
|
103 |
<div class="header">
|
104 |
+
<h1>Cancer Game Theory Simulation</h1>
|
105 |
</div>
|
106 |
|
107 |
<div class="rules">
|
108 |
<h2>Simulation Rules</h2>
|
109 |
<ul>
|
110 |
+
<li>Cancer cells die when surrounded by 3+ cells within 40px</li>
|
111 |
+
<li>Cancer cells convert isolated healthy cells (no nearby healthy)</li>
|
112 |
+
<li>Cells reproduce based on type-specific rates</li>
|
113 |
+
<li>Cancer cells move faster than healthy cells</li>
|
114 |
+
<li>Neural networks control movement decisions</li>
|
115 |
+
<li>Adjust parameters below to influence outcomes</li>
|
116 |
</ul>
|
117 |
</div>
|
118 |
|
119 |
<div class="controls">
|
120 |
<h2>Simulation Parameters</h2>
|
121 |
<div class="param-group">
|
122 |
+
<label>Hidden Dimension: <input type="number" id="hiddenDim" value="4" min="1"></label>
|
123 |
<label>Initial Healthy: <input type="number" id="initialHealthy" value="15" min="1"></label>
|
124 |
<label>Initial Cancer: <input type="number" id="initialCancer" value="8" min="1"></label>
|
125 |
<label>Mutation Rate: <input type="number" id="mutationRate" value="0.1" step="0.01" min="0"></label>
|
|
|
134 |
Healthy: <span id="healthyCount">0</span> |
|
135 |
Cancer: <span id="cancerCount">0</span>
|
136 |
</div>
|
137 |
+
|
138 |
+
<div class="data-panel">
|
139 |
+
<div class="generations-table">
|
140 |
+
<h3>Generation History (Every 10 gens)</h3>
|
141 |
+
<table id="generationTable">
|
142 |
+
<thead>
|
143 |
+
<tr>
|
144 |
+
<th>Generation</th>
|
145 |
+
<th>Healthy</th>
|
146 |
+
<th>Cancer</th>
|
147 |
+
<th>Avg Speed</th>
|
148 |
+
</tr>
|
149 |
+
</thead>
|
150 |
+
<tbody id="tableBody"></tbody>
|
151 |
+
</table>
|
152 |
+
</div>
|
153 |
+
<div>
|
154 |
+
<h3>Population Trends</h3>
|
155 |
+
<canvas id="populationChart"></canvas>
|
156 |
+
</div>
|
157 |
+
</div>
|
158 |
</div>
|
159 |
|
160 |
<canvas id="simCanvas" width="800" height="500"></canvas>
|
|
|
172 |
let generation = 1;
|
173 |
let frameCount = 0;
|
174 |
const cellRadius = 5;
|
175 |
+
let populationChart = null;
|
176 |
+
let generationsData = [];
|
177 |
+
let currentHiddenDim = 4;
|
178 |
|
179 |
function getNormal(mean = 0, std = 1) {
|
180 |
let u, v, s;
|
|
|
189 |
|
190 |
class NeuralNetwork {
|
191 |
constructor(parent = null) {
|
192 |
+
const inputSize = 8;
|
193 |
+
const outputSize = 2;
|
194 |
+
|
195 |
if(parent) {
|
196 |
this.weights1 = parent.weights1.map(row =>
|
197 |
row.map(w => w + getNormal(0, parseFloat(document.getElementById('mutationRate').value)))
|
|
|
200 |
row.map(w => w + getNormal(0, parseFloat(document.getElementById('mutationRate').value)))
|
201 |
);
|
202 |
} else {
|
203 |
+
this.weights1 = Array.from({length: inputSize}, () =>
|
204 |
+
Array.from({length: currentHiddenDim}, () => getNormal(0, 1)));
|
205 |
+
this.weights2 = Array.from({length: currentHiddenDim}, () =>
|
206 |
+
Array.from({length: outputSize}, () => getNormal(0, 1)));
|
207 |
}
|
208 |
}
|
209 |
|
210 |
activate(x) {
|
211 |
+
return x;
|
212 |
}
|
213 |
|
214 |
predict(inputs) {
|
|
|
231 |
this.y = parent ?
|
232 |
parent.y + (Math.random() * 40 - 20) :
|
233 |
Math.random() * canvas.height;
|
234 |
+
this.speed = 0;
|
235 |
}
|
236 |
|
237 |
getNearbyCells() {
|
|
|
255 |
|
256 |
const [vx, vy] = this.brain.predict(inputs);
|
257 |
|
|
|
258 |
this.x += vx;
|
259 |
this.y += vy;
|
260 |
+
this.speed = Math.hypot(vx, vy);
|
261 |
|
|
|
262 |
if(this.type === 'cancer') {
|
263 |
+
this.x += vx * 0.5;
|
264 |
this.y += vy * 0.5;
|
265 |
+
this.speed *= 1.5;
|
266 |
}
|
267 |
|
|
|
268 |
this.x = (this.x + canvas.width) % canvas.width;
|
269 |
this.y = (this.y + canvas.height) % canvas.height;
|
270 |
}
|
|
|
277 |
}
|
278 |
}
|
279 |
|
280 |
+
function updateChart() {
|
281 |
+
const ctx = document.getElementById('populationChart').getContext('2d');
|
282 |
+
|
283 |
+
if(populationChart) {
|
284 |
+
populationChart.destroy();
|
285 |
+
}
|
286 |
+
|
287 |
+
populationChart = new Chart(ctx, {
|
288 |
+
type: 'line',
|
289 |
+
data: {
|
290 |
+
labels: generationsData.map(d => d.generation),
|
291 |
+
datasets: [{
|
292 |
+
label: 'Healthy Cells',
|
293 |
+
data: generationsData.map(d => d.healthy),
|
294 |
+
borderColor: '#00ff00',
|
295 |
+
tension: 0.1
|
296 |
+
}, {
|
297 |
+
label: 'Cancer Cells',
|
298 |
+
data: generationsData.map(d => d.cancer),
|
299 |
+
borderColor: '#ff0000',
|
300 |
+
tension: 0.1
|
301 |
+
}]
|
302 |
+
},
|
303 |
+
options: {
|
304 |
+
responsive: true,
|
305 |
+
scales: {
|
306 |
+
y: {
|
307 |
+
beginAtZero: true
|
308 |
+
}
|
309 |
+
}
|
310 |
+
}
|
311 |
+
});
|
312 |
+
}
|
313 |
+
|
314 |
+
function updateTable() {
|
315 |
+
const tableBody = document.getElementById('tableBody');
|
316 |
+
tableBody.innerHTML = generationsData.map(d => `
|
317 |
+
<tr>
|
318 |
+
<td>${d.generation}</td>
|
319 |
+
<td>${d.healthy}</td>
|
320 |
+
<td>${d.cancer}</td>
|
321 |
+
<td>${d.avgSpeed.toFixed(2)}</td>
|
322 |
+
</tr>
|
323 |
+
`).join('');
|
324 |
+
}
|
325 |
+
|
326 |
+
function saveGenerationData() {
|
327 |
+
if(generation % 10 === 0) {
|
328 |
+
const healthy = cells.filter(c => c.type === 'healthy').length;
|
329 |
+
const cancer = cells.filter(c => c.type === 'cancer').length;
|
330 |
+
const speeds = cells.map(c => c.speed);
|
331 |
+
const avgSpeed = speeds.reduce((a,b) => a + b, 0) / speeds.length || 0;
|
332 |
+
|
333 |
+
generationsData.push({
|
334 |
+
generation,
|
335 |
+
healthy,
|
336 |
+
cancer,
|
337 |
+
avgSpeed
|
338 |
+
});
|
339 |
+
|
340 |
+
if(generationsData.length > 20) generationsData.shift();
|
341 |
+
updateChart();
|
342 |
+
updateTable();
|
343 |
+
}
|
344 |
+
}
|
345 |
+
|
346 |
function checkCollisions() {
|
347 |
cells.forEach((cell, i) => {
|
348 |
if(cell.type === 'cancer') {
|
|
|
397 |
generation++;
|
398 |
reproduceCells();
|
399 |
updateStatus();
|
400 |
+
saveGenerationData();
|
401 |
}
|
402 |
|
403 |
cells.forEach(cell => cell.update());
|
|
|
417 |
generation = 1;
|
418 |
frameCount = 0;
|
419 |
cells = [];
|
420 |
+
generationsData = [];
|
421 |
+
currentHiddenDim = parseInt(document.getElementById('hiddenDim').value);
|
422 |
|
423 |
const initialHealthy = parseInt(document.getElementById('initialHealthy').value);
|
424 |
const initialCancer = parseInt(document.getElementById('initialCancer').value);
|
|
|
427 |
for(let i = 0; i < initialCancer; i++) cells.push(new Cell('cancer'));
|
428 |
|
429 |
updateStatus();
|
430 |
+
updateChart();
|
431 |
+
updateTable();
|
432 |
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
433 |
cells.forEach(cell => cell.draw());
|
434 |
});
|