File size: 4,595 Bytes
e126020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0379c3a
e126020
 
 
 
 
 
 
 
 
 
 
 
 
 
0379c3a
e126020
 
 
 
 
 
0379c3a
 
 
 
 
 
e126020
0379c3a
 
 
 
e126020
 
0379c3a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import math
import os
import sys

import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import torch
import torchvision

os.system("git clone https://github.com/xplip/pixel.git")
sys.path.append('./pixel')

from transformers import set_seed
from pixel.src.pixel import (
    PIXELConfig,
    PIXELForPreTraining,
    SpanMaskingGenerator,
    PyGameTextRenderer,
    get_transforms,
    resize_model_embeddings,
    truncate_decoder_pos_embeddings,
    get_attention_mask
)

model_name_or_path = "Team-PIXEL/pixel-base"
max_seq_length = 529
text_renderer = PyGameTextRenderer.from_pretrained(model_name_or_path, max_seq_length=max_seq_length)
config = PIXELConfig.from_pretrained(model_name_or_path)
model = PIXELForPreTraining.from_pretrained(model_name_or_path, config=config)

def clip(x: torch.Tensor):
    x = torch.einsum("chw->hwc", x)
    x = torch.clip(x * 255, 0, 255)
    x = torch.einsum("hwc->chw", x)
    return x

def get_image(img: torch.Tensor, do_clip: bool = True):
    if do_clip:
        img = clip(img)
    img = torchvision.utils.make_grid(img, normalize=True)
    image = Image.fromarray(
        img.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy()
    )
    return image

def inference(text: str, mask_ratio: float = 0.25, max_span_length: int = 6, seed: int = 42):
    config.update({"mask_ratio": mask_ratio})
    resize_model_embeddings(model, max_seq_length)
    truncate_decoder_pos_embeddings(model, max_seq_length)

    set_seed(seed)

    transforms = get_transforms(
        do_resize=True,
        size=(text_renderer.pixels_per_patch, text_renderer.pixels_per_patch * text_renderer.max_seq_length),
    )

    encoding = text_renderer(text=text)
    attention_mask = get_attention_mask(
        num_text_patches=encoding.num_text_patches, seq_length=text_renderer.max_seq_length
    )

    img = transforms(Image.fromarray(encoding.pixel_values)).unsqueeze(0)
    attention_mask = attention_mask.unsqueeze(0)
    inputs = {"pixel_values": img.float(), "attention_mask": attention_mask}

    mask_generator = SpanMaskingGenerator(
        num_patches=text_renderer.max_seq_length,
        num_masking_patches=math.ceil(mask_ratio * text_renderer.max_seq_length),
        max_span_length=max_span_length,
        spacing="span"
    )
    mask = torch.tensor(mask_generator(num_text_patches=(encoding.num_text_patches + 1))).unsqueeze(0)
    inputs.update({"patch_mask": mask})

    model.eval()
    with torch.no_grad():
        outputs = model(**inputs)

    predictions = model.unpatchify(outputs["logits"]).detach().cpu().squeeze()

    mask = outputs["mask"].detach().cpu()
    mask = mask.unsqueeze(-1).repeat(1, 1, text_renderer.pixels_per_patch ** 2 * 3)
    mask = model.unpatchify(mask).squeeze()

    attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, text_renderer.pixels_per_patch ** 2 * 3)
    attention_mask = model.unpatchify(attention_mask).squeeze()

    original_img = model.unpatchify(model.patchify(img)).squeeze()

    im_masked = original_img * (1 - (torch.bitwise_and(mask == 1, attention_mask == 1)).long())

    masked_predictions = predictions * mask * attention_mask

    reconstruction = im_masked + masked_predictions

    return [get_image(original_img), get_image(im_masked), get_image(masked_predictions, do_clip=False), get_image(reconstruction, do_clip=False)]
  
demo = gr.Blocks()

with demo:
    gr.Markdown("## PIXEL Masked Autoencoding")
    gr.Markdown("Gradio demo for [PIXEL](https://huggingface.co/Team-PIXEL/pixel-base), introduced in [Language Modelling with Pixels](https://arxiv.org/abs/2207.06991). To use it, simply input your piece of text or click one of the examples to load them. Read more at the links below.")
    with gr.Row():
        with gr.Column():
            tb_text = gr.Textbox(label="Text")
            sl_ratio = gr.Slider(0.01, 1.0, step=0.01, value=0.25, label="Span masking ratio")
            sl_len = gr.Slider(1, 6, step=1, value=6, label="Masking max span length")
            sl_seed = gr.Slider(0, 1000, step=1, value=42, label="Random seed")
            btn = gr.Button("Run")
        
        with gr.Column():
            out_original = gr.Image(label="Original")
            out_masked = gr.Image(label="Masked")
            out_masked_pred = gr.Image(label="Masked Predictions")
            out_reconstruction = gr.Image(label="Reconstruction")
    
    btn.click(fn=inference, inputs=[tb_text, sl_ratio, sl_len, sl_seed], outputs=[out_original, out_masked, out_masked_pred, out_reconstruction])

demo.launch(debug=True)