Spaces:
Runtime error
Runtime error
File size: 2,568 Bytes
47031d7 3be0c5b 47031d7 daae8cc 3be0c5b 47031d7 15890c0 47031d7 f71fa9b 47031d7 0af4a83 f71fa9b 0af4a83 3be0c5b 0af4a83 92cdcfc 0af4a83 baae755 f71fa9b 0af4a83 be8d239 0af4a83 c6b21e3 0af4a83 c6b21e3 f71fa9b 0af4a83 9814b43 0af4a83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
"""
LLM Inference Server main application using LitServe framework.
"""
import litserve as ls
import yaml
import logging
import os
from pathlib import Path
from fastapi.middleware.cors import CORSMiddleware
from huggingface_hub import login
from .routes import router, init_router
from .api import InferenceApi
# Store process list globally so it doesn't get garbage collected
_WORKER_PROCESSES = []
_MANAGER = None
def setup_logging():
"""Set up basic logging configuration"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
return logging.getLogger(__name__)
def load_config():
"""Load configuration from config.yaml"""
config_path = Path(__file__).parent / "config.yaml"
with open(config_path) as f:
return yaml.safe_load(f)
def create_app():
"""Create and configure the application instance."""
global _WORKER_PROCESSES, _MANAGER
logger = setup_logging()
# Log into Hugging Face Hub
access_token = os.environ.get("InferenceAPI")
if access_token:
try:
login(token=access_token)
logger.info("Successfully logged into Hugging Face Hub")
except Exception as e:
logger.error(f"Failed to login to Hugging Face Hub: {str(e)}")
else:
logger.warning("No Hugging Face access token found")
config = load_config()
server_config = config.get('server', {})
# Initialize API with config
api = InferenceApi(config)
# Initialize router with API instance
init_router(api)
# Create LitServer instance
server = ls.LitServer(
api,
timeout=server_config.get('timeout', 60),
max_batch_size=server_config.get('max_batch_size', 1),
track_requests=True
)
# Launch inference workers (assuming single uvicorn worker for now)
_MANAGER, _WORKER_PROCESSES = server.launch_inference_worker(num_uvicorn_servers=1)
# Get the FastAPI app
app = server.app
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Add routes with configured prefix
api_prefix = config.get('llm_server', {}).get('api_prefix', '/api/v1')
app.include_router(router, prefix=api_prefix)
# Set the response queue ID for the app
app.response_queue_id = 0 # Since we're using a single worker
return app
# Create the app instance for uvicorn
app = create_app() |