File size: 4,536 Bytes
47031d7
63fdbaa
47031d7
63fdbaa
a4e24d4
db5664e
 
 
 
47031d7
a4e24d4
db5664e
47031d7
a4e24d4
47031d7
 
db5664e
a4e24d4
 
 
db5664e
47031d7
db5664e
 
47031d7
a4e24d4
47031d7
63fdbaa
8f2f662
63fdbaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f2f662
 
 
 
 
 
 
a4e24d4
 
 
 
 
 
 
63fdbaa
a4e24d4
63fdbaa
 
 
 
 
 
 
 
 
47031d7
 
 
 
 
 
 
a4e24d4
47031d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db5664e
a4e24d4
47031d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e24d4
 
 
db5664e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import httpx
from typing import Optional, AsyncIterator, Dict, Any, Iterator
import logging
import asyncio
from litserve import LitAPI
from pydantic import BaseModel

class GenerationResponse(BaseModel):
    generated_text: str

class InferenceApi(LitAPI):
    def __init__(self):
        """Initialize the Inference API with configuration."""
        super().__init__()
        self.logger = logging.getLogger(__name__)
        self.logger.info("Initializing Inference API")
        self.client = None

    async def setup(self, device: Optional[str] = None):
        """Setup method required by LitAPI - initialize HTTP client"""
        self._device = device
        self.client = httpx.AsyncClient(
            base_url="http://localhost:8002",  # We'll need to make this configurable
            timeout=60.0
        )
        self.logger.info(f"Inference API setup completed on device: {device}")

    def predict(self, x: str, **kwargs) -> Iterator[str]:
        """
        Non-async prediction method that yields results.
        """
        loop = asyncio.get_event_loop()
        async def async_gen():
            async for item in self._async_predict(x, **kwargs):
                yield item

        gen = async_gen()
        while True:
            try:
                yield loop.run_until_complete(gen.__anext__())
            except StopAsyncIteration:
                break

    async def _async_predict(self, x: str, **kwargs) -> AsyncIterator[str]:
        """
        Internal async prediction method.
        """
        if self.stream:
            async for chunk in self.generate_stream(x, **kwargs):
                yield chunk
        else:
            response = await self.generate_response(x, **kwargs)
            yield response

    def decode_request(self, request: Any, **kwargs) -> str:
        """Convert the request payload to input format."""
        if isinstance(request, dict) and "prompt" in request:
            return request["prompt"]
        return request

    def encode_response(self, output: Iterator[str], **kwargs) -> Dict[str, Any]:
        """Convert the model output to a response payload."""
        # For streaming responses
        if self.stream:
            return {"generated_text": output}
        # For non-streaming, take the first (and only) item from the iterator
        try:
            result = next(output)
            return {"generated_text": result}
        except StopIteration:
            return {"generated_text": ""}

    async def generate_response(
            self,
            prompt: str,
            system_message: Optional[str] = None,
            max_new_tokens: Optional[int] = None
    ) -> str:
        """Generate a complete response by forwarding the request to the LLM Server."""
        self.logger.debug(f"Forwarding generation request for prompt: {prompt[:50]}...")

        try:
            response = await self.client.post(
                "/api/v1/generate",
                json={
                    "prompt": prompt,
                    "system_message": system_message,
                    "max_new_tokens": max_new_tokens
                }
            )
            response.raise_for_status()
            data = response.json()
            return data["generated_text"]

        except Exception as e:
            self.logger.error(f"Error in generate_response: {str(e)}")
            raise

    async def generate_stream(
            self,
            prompt: str,
            system_message: Optional[str] = None,
            max_new_tokens: Optional[int] = None
    ) -> AsyncIterator[str]:
        """Generate a streaming response by forwarding the request to the LLM Server."""
        self.logger.debug(f"Forwarding streaming request for prompt: {prompt[:50]}...")

        try:
            async with self.client.stream(
                    "POST",
                    "/api/v1/generate/stream",
                    json={
                        "prompt": prompt,
                        "system_message": system_message,
                        "max_new_tokens": max_new_tokens
                    }
            ) as response:
                response.raise_for_status()
                async for chunk in response.aiter_text():
                    yield chunk

        except Exception as e:
            self.logger.error(f"Error in generate_stream: {str(e)}")
            raise

    async def cleanup(self):
        """Cleanup method - close HTTP client"""
        if self.client:
            await self.client.aclose()