Inference-API / main /main.py
AurelioAguirre's picture
Updated Dockerfile
9de4eee
raw
history blame
3.03 kB
"""
LLM Inference Server main application using LitServe framework.
"""
from sys import platform
import litserve as ls
import logging
import os
from fastapi.middleware.cors import CORSMiddleware
from huggingface_hub import login
from .routes import router, init_router
from .api import InferenceApi
from .utils import load_config
# Store process list globally so it doesn't get garbage collected
_WORKER_PROCESSES = []
_MANAGER = None
# Load configuration
config = load_config()
def setup_logging():
"""Set up basic logging configuration"""
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
return logging.getLogger(__name__)
def create_app():
"""Create and configure the application instance."""
global _WORKER_PROCESSES, _MANAGER, config
logger = setup_logging()
# Log into Hugging Face Hub
access_token = os.environ.get("InfAPITokenWrite")
if access_token:
try:
login(token=access_token)
logger.info("Successfully logged into Hugging Face Hub")
except Exception as e:
logger.error(f"Failed to login to Hugging Face Hub: {str(e)}")
else:
logger.warning("No Hugging Face access token found")
server_config = config.get('server', {})
# Initialize API with config
api = InferenceApi(config)
# Initialize router with API instance
init_router(api, config)
if platform == "darwin": # Darwin is macOS
server = ls.LitServer(
api,
timeout=server_config.get('timeout', 60),
max_batch_size=server_config.get('max_batch_size', 1),
track_requests=True,
accelerator="cpu" # Force CPU on Mac
)
else:
server = ls.LitServer(
api,
timeout=server_config.get('timeout', 60),
max_batch_size=server_config.get('max_batch_size', 1),
track_requests=True
)
# Launch inference workers (assuming single uvicorn worker for now)
_MANAGER, _WORKER_PROCESSES = server.launch_inference_worker(num_uvicorn_servers=1)
# Get the FastAPI appls
app = server.app
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Add routes with configured prefix
api_prefix = config.get('llm_server', {}).get('api_prefix', '/api/v1')
app.include_router(router, prefix=api_prefix)
# Set the response queue ID for the app
app.response_queue_id = 0 # Since we're using a single worker
return app
# Create the app instance for uvicorn
app = create_app()
if __name__ == "__main__":
# Run the app with uvicorn
import uvicorn
host = config["server"]["host"]
port = config["server"]["port"]
uvicorn.run(
app,
host=host,
port=port,
log_level=config["logging"]["level"].lower()
)