Inference-API / main /routes.py
AurelioAguirre's picture
debugging chunks v5
266a3d3
raw
history blame
9.99 kB
from fastapi import APIRouter, HTTPException
from fastapi.responses import StreamingResponse
from typing import Optional
import json
from time import time
import logging
from .api import InferenceApi
from .schemas import (
GenerateRequest,
EmbeddingRequest,
EmbeddingResponse,
SystemStatusResponse,
ValidationResponse,
ChatCompletionRequest,
ChatCompletionResponse, QueryExpansionResponse, QueryExpansionRequest, ChunkRerankResponse, ChunkRerankRequest
)
router = APIRouter()
logger = logging.getLogger(__name__)
api = None
config = None
def init_router(inference_api: InferenceApi, conf):
"""Initialize router with an already setup API instance"""
global api, config
api = inference_api
config = conf
logger.info("Router initialized with Inference API instance")
@router.post("/generate")
async def generate_text(request: GenerateRequest):
"""Generate text response from prompt"""
logger.info(f"Received generation request for prompt: {request.prompt[:50]}...")
try:
response = await api.generate_response(
prompt=request.prompt,
system_message=request.system_message,
max_new_tokens=request.max_new_tokens
)
logger.info("Successfully generated response")
return {"generated_text": response}
except Exception as e:
logger.error(f"Error in generate_text endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/generate/stream")
async def generate_stream(request: GenerateRequest):
"""Generate streaming text response from prompt"""
logger.info(f"Received streaming generation request for prompt: {request.prompt[:50]}...")
try:
return StreamingResponse(
api.generate_stream(
prompt=request.prompt,
system_message=request.system_message,
max_new_tokens=request.max_new_tokens
),
media_type="text/event-stream"
)
except Exception as e:
logger.error(f"Error in generate_stream endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest):
"""OpenAI-compatible chat completion endpoint"""
logger.info(f"Received chat completion request with {len(request.messages)} messages")
try:
# Extract the last user message, or combine messages if needed
last_message = request.messages[-1].content
if request.stream:
async def generate_stream():
async for chunk in api.generate_stream(
prompt=last_message,
):
# Parse the SSE format from LLM Server
if chunk.startswith('data: '):
chunk = chunk[6:].replace("\n\n", "") # Remove "data: " and trailing \n\n
#chunk = chunk + " "
logger.debug(f"Sending chunk: {chunk}...")
if chunk == '[DONE]':
continue
response_chunk = {
"id": "chatcmpl-123",
"object": "chat.completion.chunk",
"created": int(time()),
"model": request.model,
"choices": [{
"index": 0,
"delta": {
"content": chunk
},
"finish_reason": None
}]
}
yield f"data: {json.dumps(response_chunk)}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(
generate_stream(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
}
)
else:
# For non-streaming, generate the full response
response_text = await api.generate_response(
prompt=last_message,
)
# Convert to OpenAI format
return ChatCompletionResponse.from_response(
content=response_text,
model=request.model
)
except Exception as e:
logger.error(f"Error in chat completion endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/expand_query", response_model=QueryExpansionResponse)
async def expand_query(request: QueryExpansionRequest):
"""Expand a query for RAG processing"""
logger.info(f"Received query expansion request: {request.query[:50]}...")
try:
result = await api.expand_query(
query=request.query,
system_message=request.system_message
)
logger.info("Successfully expanded query")
return result
except FileNotFoundError as e:
logger.error(f"Template file not found: {str(e)}")
raise HTTPException(status_code=500, detail="Query expansion template not found")
except json.JSONDecodeError as e:
logger.error(f"Invalid JSON response from LLM: {str(e)}")
raise HTTPException(status_code=500, detail="Invalid response format from LLM")
except Exception as e:
logger.error(f"Error in expand_query endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/rerank", response_model=ChunkRerankResponse)
async def rerank_chunks(request: ChunkRerankRequest):
"""Rerank chunks based on their relevance to the query"""
logger.info(f"Received reranking request for query: {request.query[:50]}...")
try:
result = await api.rerank_chunks(
query=request.query,
chunks=request.chunks,
system_message=request.system_message
)
logger.info(f"Successfully reranked {len(request.chunks)} chunks")
return result
except Exception as e:
logger.error(f"Error in rerank_chunks endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/embedding", response_model=EmbeddingResponse)
async def generate_embedding(request: EmbeddingRequest):
"""Generate embedding vector from text"""
logger.info(f"Received embedding request for text: {request.text[:50]}...")
try:
embedding = await api.generate_embedding(request.text)
logger.info(f"Successfully generated embedding of dimension {len(embedding)}")
return EmbeddingResponse(
embedding=embedding,
dimension=len(embedding)
)
except Exception as e:
logger.error(f"Error in generate_embedding endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.get("/system/status",
response_model=SystemStatusResponse,
summary="Check System Status",
description="Returns comprehensive system status including CPU, Memory, GPU, Storage, and Model information")
async def check_system():
"""Get system status from LLM Server"""
try:
return await api.check_system_status()
except Exception as e:
logger.error(f"Error checking system status: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.get("/system/validate",
response_model=ValidationResponse,
summary="Validate System Configuration",
description="Validates system configuration, folders, and model setup")
async def validate_system():
"""Get system validation status from LLM Server"""
try:
return await api.validate_system()
except Exception as e:
logger.error(f"Error validating system: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/model/initialize",
summary="Initialize default or specified model",
description="Initialize model for use. Uses default model from config if none specified.")
async def initialize_model(model_name: Optional[str] = None):
"""Initialize a model for use"""
try:
return await api.initialize_model(model_name)
except Exception as e:
logger.error(f"Error initializing model: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/model/initialize/embedding",
summary="Initialize embedding model",
description="Initialize a separate model specifically for generating embeddings")
async def initialize_embedding_model(model_name: Optional[str] = None):
"""Initialize a model specifically for embeddings"""
try:
return await api.initialize_embedding_model(model_name)
except Exception as e:
logger.error(f"Error initializing embedding model: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/model/download",
summary="Download default or specified model",
description="Downloads model files. Uses default model from config if none specified.")
async def download_model(model_name: Optional[str] = None):
"""Download model files to local storage"""
try:
# Use model name from config if none provided
model_to_download = model_name or config["model"]["defaults"]["model_name"]
logger.info(f"Received request to download model: {model_to_download}")
result = await api.download_model(model_to_download)
logger.info(f"Successfully downloaded model: {model_to_download}")
return result
except Exception as e:
logger.error(f"Error downloading model: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.on_event("shutdown")
async def shutdown_event():
"""Clean up resources on shutdown"""
if api:
await api.cleanup()