AurelioAguirre's picture
fixing pydantic v4
db5664e
raw
history blame
3.94 kB
import httpx
from typing import Optional, AsyncIterator, Dict, Any
import logging
from litserve import LitAPI
from pydantic import BaseModel
class GenerationResponse(BaseModel):
generated_text: str
class InferenceApi(LitAPI):
def __init__(self):
"""Initialize the Inference API with configuration."""
super().__init__()
self.logger = logging.getLogger(__name__)
self.logger.info("Initializing Inference API")
self.client = None
async def setup(self, device: Optional[str] = None):
"""Setup method required by LitAPI - initialize HTTP client"""
self._device = device
self.client = httpx.AsyncClient(
base_url="http://localhost:8002", # We'll need to make this configurable
timeout=60.0
)
self.logger.info(f"Inference API setup completed on device: {device}")
async def predict(self, x: str, **kwargs) -> AsyncIterator[str]:
"""
Main prediction method required by LitAPI.
Always yields, either chunks in streaming mode or complete response in non-streaming mode.
"""
if self.stream:
async for chunk in self.generate_stream(x, **kwargs):
yield chunk
else:
response = await self.generate_response(x, **kwargs)
yield response
def decode_request(self, request: Any, **kwargs) -> str:
"""Convert the request payload to input format."""
if isinstance(request, dict) and "prompt" in request:
return request["prompt"]
return request
def encode_response(self, output: AsyncIterator[str], **kwargs) -> AsyncIterator[Dict[str, str]]:
"""Convert the model output to a response payload."""
async def wrapper():
async for chunk in output:
yield {"generated_text": chunk}
return wrapper()
async def generate_response(
self,
prompt: str,
system_message: Optional[str] = None,
max_new_tokens: Optional[int] = None
) -> str:
"""Generate a complete response by forwarding the request to the LLM Server."""
self.logger.debug(f"Forwarding generation request for prompt: {prompt[:50]}...")
try:
response = await self.client.post(
"/api/v1/generate",
json={
"prompt": prompt,
"system_message": system_message,
"max_new_tokens": max_new_tokens
}
)
response.raise_for_status()
data = response.json()
return data["generated_text"]
except Exception as e:
self.logger.error(f"Error in generate_response: {str(e)}")
raise
async def generate_stream(
self,
prompt: str,
system_message: Optional[str] = None,
max_new_tokens: Optional[int] = None
) -> AsyncIterator[str]:
"""Generate a streaming response by forwarding the request to the LLM Server."""
self.logger.debug(f"Forwarding streaming request for prompt: {prompt[:50]}...")
try:
async with self.client.stream(
"POST",
"/api/v1/generate/stream",
json={
"prompt": prompt,
"system_message": system_message,
"max_new_tokens": max_new_tokens
}
) as response:
response.raise_for_status()
async for chunk in response.aiter_text():
yield chunk
except Exception as e:
self.logger.error(f"Error in generate_stream: {str(e)}")
raise
async def cleanup(self):
"""Cleanup method - close HTTP client"""
if self.client:
await self.client.aclose()