Spaces:
Runtime error
Runtime error
Commit
·
02fd6bb
1
Parent(s):
da1009f
added openAI schema based endpoint and response
Browse files- main/api.py +19 -21
- main/config.yaml +13 -6
- main/main.py +16 -12
- main/routes.py +62 -3
- main/schemas.py +54 -2
- requirements.txt +1 -0
main/api.py
CHANGED
@@ -9,13 +9,15 @@ class GenerationResponse(BaseModel):
|
|
9 |
generated_text: str
|
10 |
|
11 |
class InferenceApi(LitAPI):
|
12 |
-
def __init__(self):
|
13 |
"""Initialize the Inference API with configuration."""
|
14 |
super().__init__()
|
15 |
self.logger = logging.getLogger(__name__)
|
16 |
self.logger.info("Initializing Inference API")
|
17 |
self._device = None
|
18 |
-
self.stream = False
|
|
|
|
|
19 |
|
20 |
async def setup(self, device: Optional[str] = None):
|
21 |
"""Setup method required by LitAPI"""
|
@@ -25,15 +27,19 @@ class InferenceApi(LitAPI):
|
|
25 |
async def _get_client(self):
|
26 |
"""Get or create HTTP client as needed"""
|
27 |
return httpx.AsyncClient(
|
28 |
-
base_url=
|
29 |
-
timeout=60.0
|
30 |
)
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def predict(self, x: str, **kwargs) -> Iterator[str]:
|
33 |
-
"""
|
34 |
-
Non-async prediction method that yields results.
|
35 |
-
Implements required LitAPI method.
|
36 |
-
"""
|
37 |
loop = asyncio.get_event_loop()
|
38 |
async def async_gen():
|
39 |
async for item in self._async_predict(x, **kwargs):
|
@@ -47,9 +53,7 @@ class InferenceApi(LitAPI):
|
|
47 |
break
|
48 |
|
49 |
async def _async_predict(self, x: str, **kwargs) -> AsyncIterator[str]:
|
50 |
-
"""
|
51 |
-
Internal async prediction method.
|
52 |
-
"""
|
53 |
if self.stream:
|
54 |
async for chunk in self.generate_stream(x, **kwargs):
|
55 |
yield chunk
|
@@ -58,19 +62,13 @@ class InferenceApi(LitAPI):
|
|
58 |
yield response
|
59 |
|
60 |
def decode_request(self, request: Any, **kwargs) -> str:
|
61 |
-
"""
|
62 |
-
Convert the request payload to input format.
|
63 |
-
Implements required LitAPI method.
|
64 |
-
"""
|
65 |
if isinstance(request, dict) and "prompt" in request:
|
66 |
return request["prompt"]
|
67 |
return request
|
68 |
|
69 |
def encode_response(self, output: Iterator[str], **kwargs) -> Dict[str, Any]:
|
70 |
-
"""
|
71 |
-
Convert the model output to a response payload.
|
72 |
-
Implements required LitAPI method.
|
73 |
-
"""
|
74 |
if self.stream:
|
75 |
return {"generated_text": output}
|
76 |
try:
|
@@ -91,7 +89,7 @@ class InferenceApi(LitAPI):
|
|
91 |
try:
|
92 |
async with await self._get_client() as client:
|
93 |
response = await client.post(
|
94 |
-
|
95 |
json={
|
96 |
"prompt": prompt,
|
97 |
"system_message": system_message,
|
@@ -119,7 +117,7 @@ class InferenceApi(LitAPI):
|
|
119 |
client = await self._get_client()
|
120 |
async with client.stream(
|
121 |
"POST",
|
122 |
-
|
123 |
json={
|
124 |
"prompt": prompt,
|
125 |
"system_message": system_message,
|
|
|
9 |
generated_text: str
|
10 |
|
11 |
class InferenceApi(LitAPI):
|
12 |
+
def __init__(self, config: Dict[str, Any]):
|
13 |
"""Initialize the Inference API with configuration."""
|
14 |
super().__init__()
|
15 |
self.logger = logging.getLogger(__name__)
|
16 |
self.logger.info("Initializing Inference API")
|
17 |
self._device = None
|
18 |
+
self.stream = False
|
19 |
+
self.config = config
|
20 |
+
self.llm_config = config.get('llm_server', {})
|
21 |
|
22 |
async def setup(self, device: Optional[str] = None):
|
23 |
"""Setup method required by LitAPI"""
|
|
|
27 |
async def _get_client(self):
|
28 |
"""Get or create HTTP client as needed"""
|
29 |
return httpx.AsyncClient(
|
30 |
+
base_url=self.llm_config.get('base_url', 'http://localhost:8002'),
|
31 |
+
timeout=float(self.llm_config.get('timeout', 60.0))
|
32 |
)
|
33 |
|
34 |
+
def _get_endpoint(self, endpoint_name: str) -> str:
|
35 |
+
"""Get full endpoint path including prefix"""
|
36 |
+
endpoints = self.llm_config.get('endpoints', {})
|
37 |
+
api_prefix = self.llm_config.get('api_prefix', '')
|
38 |
+
endpoint = endpoints.get(endpoint_name, '')
|
39 |
+
return f"{api_prefix}{endpoint}"
|
40 |
+
|
41 |
def predict(self, x: str, **kwargs) -> Iterator[str]:
|
42 |
+
"""Non-async prediction method that yields results."""
|
|
|
|
|
|
|
43 |
loop = asyncio.get_event_loop()
|
44 |
async def async_gen():
|
45 |
async for item in self._async_predict(x, **kwargs):
|
|
|
53 |
break
|
54 |
|
55 |
async def _async_predict(self, x: str, **kwargs) -> AsyncIterator[str]:
|
56 |
+
"""Internal async prediction method."""
|
|
|
|
|
57 |
if self.stream:
|
58 |
async for chunk in self.generate_stream(x, **kwargs):
|
59 |
yield chunk
|
|
|
62 |
yield response
|
63 |
|
64 |
def decode_request(self, request: Any, **kwargs) -> str:
|
65 |
+
"""Convert the request payload to input format."""
|
|
|
|
|
|
|
66 |
if isinstance(request, dict) and "prompt" in request:
|
67 |
return request["prompt"]
|
68 |
return request
|
69 |
|
70 |
def encode_response(self, output: Iterator[str], **kwargs) -> Dict[str, Any]:
|
71 |
+
"""Convert the model output to a response payload."""
|
|
|
|
|
|
|
72 |
if self.stream:
|
73 |
return {"generated_text": output}
|
74 |
try:
|
|
|
89 |
try:
|
90 |
async with await self._get_client() as client:
|
91 |
response = await client.post(
|
92 |
+
self._get_endpoint('generate'),
|
93 |
json={
|
94 |
"prompt": prompt,
|
95 |
"system_message": system_message,
|
|
|
117 |
client = await self._get_client()
|
118 |
async with client.stream(
|
119 |
"POST",
|
120 |
+
self._get_endpoint('generate_stream'),
|
121 |
json={
|
122 |
"prompt": prompt,
|
123 |
"system_message": system_message,
|
main/config.yaml
CHANGED
@@ -1,11 +1,18 @@
|
|
1 |
server:
|
|
|
2 |
port: 8001
|
3 |
timeout: 60
|
|
|
4 |
|
5 |
llm_server:
|
6 |
-
base_url: "https://teamgenki-llmserver.hf.space:
|
7 |
-
timeout: 60
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
server:
|
2 |
+
host: "localhost"
|
3 |
port: 8001
|
4 |
timeout: 60
|
5 |
+
max_batch_size: 1
|
6 |
|
7 |
llm_server:
|
8 |
+
base_url: "https://teamgenki-llmserver.hf.space:7860"
|
9 |
+
timeout: 60.0
|
10 |
+
api_prefix: "/api/v1" # This will be used for route prefixing
|
11 |
+
endpoints:
|
12 |
+
generate: "/generate"
|
13 |
+
generate_stream: "/generate/stream"
|
14 |
+
embedding: "/embedding"
|
15 |
+
system_status: "/system/status"
|
16 |
+
system_validate: "/system/validate"
|
17 |
+
model_initialize: "/model/initialize"
|
18 |
+
model_initialize_embedding: "/model/initialize/embedding"
|
main/main.py
CHANGED
@@ -31,17 +31,18 @@ async def async_main():
|
|
31 |
try:
|
32 |
# Load configuration
|
33 |
config = load_config()
|
|
|
34 |
|
35 |
-
# Initialize API
|
36 |
-
api = InferenceApi()
|
37 |
-
await api.setup()
|
38 |
-
await init_router(config)
|
39 |
|
40 |
-
# Create LitServer instance
|
41 |
server = ls.LitServer(
|
42 |
api,
|
43 |
-
timeout=
|
44 |
-
max_batch_size=1,
|
45 |
track_requests=True
|
46 |
)
|
47 |
|
@@ -54,13 +55,16 @@ async def async_main():
|
|
54 |
allow_headers=["*"],
|
55 |
)
|
56 |
|
57 |
-
# Add
|
58 |
-
|
|
|
59 |
|
60 |
-
|
|
|
|
|
61 |
|
62 |
-
#
|
63 |
-
server.run(port=port)
|
64 |
|
65 |
except Exception as e:
|
66 |
logger.error(f"Server initialization failed: {str(e)}")
|
|
|
31 |
try:
|
32 |
# Load configuration
|
33 |
config = load_config()
|
34 |
+
server_config = config.get('server', {})
|
35 |
|
36 |
+
# Initialize API with config and await setup
|
37 |
+
api = InferenceApi(config)
|
38 |
+
await api.setup()
|
39 |
+
await init_router(config)
|
40 |
|
41 |
+
# Create LitServer instance with config
|
42 |
server = ls.LitServer(
|
43 |
api,
|
44 |
+
timeout=server_config.get('timeout', 60),
|
45 |
+
max_batch_size=server_config.get('max_batch_size', 1),
|
46 |
track_requests=True
|
47 |
)
|
48 |
|
|
|
55 |
allow_headers=["*"],
|
56 |
)
|
57 |
|
58 |
+
# Add routes with configured prefix
|
59 |
+
api_prefix = config.get('llm_server', {}).get('api_prefix', '/api/v1')
|
60 |
+
server.app.include_router(router, prefix=api_prefix)
|
61 |
|
62 |
+
# Get configured port
|
63 |
+
port = server_config.get('port', 8001)
|
64 |
+
host = server_config.get('host', 'localhost')
|
65 |
|
66 |
+
# Run server
|
67 |
+
server.run(host=host, port=port)
|
68 |
|
69 |
except Exception as e:
|
70 |
logger.error(f"Server initialization failed: {str(e)}")
|
main/routes.py
CHANGED
@@ -6,7 +6,9 @@ from .schemas import (
|
|
6 |
EmbeddingRequest,
|
7 |
EmbeddingResponse,
|
8 |
SystemStatusResponse,
|
9 |
-
ValidationResponse
|
|
|
|
|
10 |
)
|
11 |
import logging
|
12 |
|
@@ -14,11 +16,68 @@ router = APIRouter()
|
|
14 |
logger = logging.getLogger(__name__)
|
15 |
api = None
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
async def init_router(config: dict):
|
18 |
"""Initialize router with config and Inference API instance"""
|
19 |
global api
|
20 |
-
api = InferenceApi()
|
21 |
-
await api.setup()
|
22 |
logger.info("Router initialized with Inference API instance")
|
23 |
|
24 |
@router.post("/generate")
|
|
|
6 |
EmbeddingRequest,
|
7 |
EmbeddingResponse,
|
8 |
SystemStatusResponse,
|
9 |
+
ValidationResponse,
|
10 |
+
ChatCompletionRequest,
|
11 |
+
ChatCompletionResponse
|
12 |
)
|
13 |
import logging
|
14 |
|
|
|
16 |
logger = logging.getLogger(__name__)
|
17 |
api = None
|
18 |
|
19 |
+
|
20 |
+
@router.post("/v1/chat/completions")
|
21 |
+
async def create_chat_completion(request: ChatCompletionRequest):
|
22 |
+
"""OpenAI-compatible chat completion endpoint"""
|
23 |
+
logger.info(f"Received chat completion request with {len(request.messages)} messages")
|
24 |
+
|
25 |
+
try:
|
26 |
+
# Extract the last user message, or combine messages if needed
|
27 |
+
last_message = request.messages[-1].content
|
28 |
+
|
29 |
+
if request.stream:
|
30 |
+
# For streaming, we need to create a generator that yields OpenAI-compatible chunks
|
31 |
+
async def generate_stream():
|
32 |
+
async for chunk in api.generate_stream(
|
33 |
+
prompt=last_message,
|
34 |
+
):
|
35 |
+
# Create a streaming response chunk in OpenAI format
|
36 |
+
response_chunk = {
|
37 |
+
"id": "chatcmpl-123",
|
38 |
+
"object": "chat.completion.chunk",
|
39 |
+
"created": int(time()),
|
40 |
+
"model": request.model,
|
41 |
+
"choices": [{
|
42 |
+
"index": 0,
|
43 |
+
"delta": {
|
44 |
+
"content": chunk
|
45 |
+
},
|
46 |
+
"finish_reason": None
|
47 |
+
}]
|
48 |
+
}
|
49 |
+
yield f"data: {json.dumps(response_chunk)}\n\n"
|
50 |
+
|
51 |
+
# Send the final chunk
|
52 |
+
yield f"data: [DONE]\n\n"
|
53 |
+
|
54 |
+
return StreamingResponse(
|
55 |
+
generate_stream(),
|
56 |
+
media_type="text/event-stream"
|
57 |
+
)
|
58 |
+
|
59 |
+
else:
|
60 |
+
# For non-streaming, generate the full response
|
61 |
+
response_text = await api.generate_response(
|
62 |
+
prompt=last_message,
|
63 |
+
)
|
64 |
+
|
65 |
+
# Convert to OpenAI format
|
66 |
+
return ChatCompletionResponse.from_response(
|
67 |
+
content=response_text,
|
68 |
+
model=request.model
|
69 |
+
)
|
70 |
+
|
71 |
+
except Exception as e:
|
72 |
+
logger.error(f"Error in chat completion endpoint: {str(e)}")
|
73 |
+
raise HTTPException(status_code=500, detail=str(e))
|
74 |
+
|
75 |
+
|
76 |
async def init_router(config: dict):
|
77 |
"""Initialize router with config and Inference API instance"""
|
78 |
global api
|
79 |
+
api = InferenceApi(config)
|
80 |
+
await api.setup()
|
81 |
logger.info("Router initialized with Inference API instance")
|
82 |
|
83 |
@router.post("/generate")
|
main/schemas.py
CHANGED
@@ -1,5 +1,57 @@
|
|
1 |
-
from pydantic import BaseModel
|
2 |
-
from typing import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
class GenerateRequest(BaseModel):
|
5 |
prompt: str
|
|
|
1 |
+
from pydantic import BaseModel, Field
|
2 |
+
from typing import List, Optional, Dict, Union, Literal
|
3 |
+
from time import time
|
4 |
+
|
5 |
+
class ChatMessage(BaseModel):
|
6 |
+
role: str
|
7 |
+
content: str
|
8 |
+
|
9 |
+
class ChatCompletionRequest(BaseModel):
|
10 |
+
model: str
|
11 |
+
messages: List[ChatMessage]
|
12 |
+
stream: bool = False
|
13 |
+
|
14 |
+
class ChatCompletionMessage(BaseModel):
|
15 |
+
role: str = "assistant"
|
16 |
+
content: str
|
17 |
+
|
18 |
+
class ChatCompletionChoice(BaseModel):
|
19 |
+
index: int = 0
|
20 |
+
message: ChatCompletionMessage
|
21 |
+
logprobs: Optional[None] = None
|
22 |
+
finish_reason: str = "stop"
|
23 |
+
|
24 |
+
class CompletionTokenDetails(BaseModel):
|
25 |
+
reasoning_tokens: int = 0
|
26 |
+
accepted_prediction_tokens: int = 0
|
27 |
+
rejected_prediction_tokens: int = 0
|
28 |
+
|
29 |
+
class CompletionUsage(BaseModel):
|
30 |
+
prompt_tokens: int = 9 # Placeholder values
|
31 |
+
completion_tokens: int = 12
|
32 |
+
total_tokens: int = 21
|
33 |
+
completion_tokens_details: CompletionTokenDetails = Field(default_factory=CompletionTokenDetails)
|
34 |
+
|
35 |
+
class ChatCompletionResponse(BaseModel):
|
36 |
+
id: str = Field(default="chatcmpl-123")
|
37 |
+
object: str = "chat.completion"
|
38 |
+
created: int = Field(default_factory=lambda: int(time()))
|
39 |
+
model: str = "gpt-4o-mini"
|
40 |
+
system_fingerprint: str = "fp_44709d6fcb"
|
41 |
+
choices: List[ChatCompletionChoice]
|
42 |
+
usage: CompletionUsage = Field(default_factory=CompletionUsage)
|
43 |
+
|
44 |
+
@classmethod
|
45 |
+
def from_response(cls, content: str, model: str = "gpt-4o-mini") -> "ChatCompletionResponse":
|
46 |
+
"""Create a ChatCompletionResponse from a simple response string"""
|
47 |
+
return cls(
|
48 |
+
model=model,
|
49 |
+
choices=[
|
50 |
+
ChatCompletionChoice(
|
51 |
+
message=ChatCompletionMessage(content=content)
|
52 |
+
)
|
53 |
+
]
|
54 |
+
)
|
55 |
|
56 |
class GenerateRequest(BaseModel):
|
57 |
prompt: str
|
requirements.txt
CHANGED
@@ -9,6 +9,7 @@ httptools==0.6.4
|
|
9 |
httpx==0.28.1
|
10 |
idna==3.10
|
11 |
litserve==0.2.5
|
|
|
12 |
pydantic==2.10.4
|
13 |
pydantic_core==2.27.2
|
14 |
python-dotenv==1.0.1
|
|
|
9 |
httpx==0.28.1
|
10 |
idna==3.10
|
11 |
litserve==0.2.5
|
12 |
+
numpy==2.2.1
|
13 |
pydantic==2.10.4
|
14 |
pydantic_core==2.27.2
|
15 |
python-dotenv==1.0.1
|