Spaces:
Runtime error
Runtime error
Commit
·
7e3820c
1
Parent(s):
08548e7
WIP adapter.py
Browse files- main/adapter.py +346 -0
main/adapter.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import httpx
|
2 |
+
import logging
|
3 |
+
from abc import ABC, abstractmethod
|
4 |
+
from typing import Optional, Dict, Any, AsyncIterator, List
|
5 |
+
|
6 |
+
class LLMAdapter(ABC):
|
7 |
+
"""Abstract base class for LLM adapters."""
|
8 |
+
|
9 |
+
@abstractmethod
|
10 |
+
async def generate_response(
|
11 |
+
self,
|
12 |
+
prompt: str,
|
13 |
+
system_message: Optional[str] = None,
|
14 |
+
max_new_tokens: Optional[int] = None
|
15 |
+
) -> str:
|
16 |
+
"""Generate a complete response from the LLM."""
|
17 |
+
pass
|
18 |
+
|
19 |
+
@abstractmethod
|
20 |
+
async def generate_stream(
|
21 |
+
self,
|
22 |
+
prompt: str,
|
23 |
+
system_message: Optional[str] = None,
|
24 |
+
max_new_tokens: Optional[int] = None
|
25 |
+
) -> AsyncIterator[str]:
|
26 |
+
"""Generate a streaming response from the LLM."""
|
27 |
+
pass
|
28 |
+
|
29 |
+
@abstractmethod
|
30 |
+
async def generate_embedding(self, text: str) -> List[float]:
|
31 |
+
"""Generate embedding vector from input text."""
|
32 |
+
pass
|
33 |
+
|
34 |
+
@abstractmethod
|
35 |
+
async def check_system_status(self) -> Dict[str, Any]:
|
36 |
+
"""Check system status of the LLM Server."""
|
37 |
+
pass
|
38 |
+
|
39 |
+
@abstractmethod
|
40 |
+
async def validate_system(self) -> Dict[str, Any]:
|
41 |
+
"""Validate system configuration and setup."""
|
42 |
+
pass
|
43 |
+
|
44 |
+
@abstractmethod
|
45 |
+
async def initialize_model(self, model_name: Optional[str] = None) -> Dict[str, Any]:
|
46 |
+
"""Initialize specified model or default model."""
|
47 |
+
pass
|
48 |
+
|
49 |
+
@abstractmethod
|
50 |
+
async def initialize_embedding_model(self, model_name: Optional[str] = None) -> Dict[str, Any]:
|
51 |
+
"""Initialize embedding model."""
|
52 |
+
pass
|
53 |
+
|
54 |
+
@abstractmethod
|
55 |
+
async def download_model(self, model_name: Optional[str] = None) -> Dict[str, str]:
|
56 |
+
"""Download model files."""
|
57 |
+
pass
|
58 |
+
|
59 |
+
@abstractmethod
|
60 |
+
async def cleanup(self):
|
61 |
+
"""Cleanup resources."""
|
62 |
+
pass
|
63 |
+
|
64 |
+
|
65 |
+
class HTTPLLMAdapter(LLMAdapter):
|
66 |
+
"""HTTP adapter for connecting to LLM services over HTTP."""
|
67 |
+
|
68 |
+
def __init__(self, config: Dict[str, Any]):
|
69 |
+
"""Initialize the HTTP LLM Adapter with configuration."""
|
70 |
+
self.logger = logging.getLogger(__name__)
|
71 |
+
self.logger.info("Initializing HTTP LLM Adapter")
|
72 |
+
self.config = config
|
73 |
+
self.llm_config = config.get('llm_server', {})
|
74 |
+
|
75 |
+
async def _get_client(self):
|
76 |
+
"""Get or create HTTP client as needed"""
|
77 |
+
host = self.llm_config.get('host', 'localhost')
|
78 |
+
port = self.llm_config.get('port', 8002)
|
79 |
+
|
80 |
+
# Construct base URL, omitting port for HF spaces
|
81 |
+
if 'hf.space' in host:
|
82 |
+
base_url = f"https://{host}"
|
83 |
+
else:
|
84 |
+
base_url = f"http://{host}:{port}"
|
85 |
+
|
86 |
+
return httpx.AsyncClient(
|
87 |
+
base_url=base_url,
|
88 |
+
timeout=float(self.llm_config.get('timeout', 60.0))
|
89 |
+
)
|
90 |
+
|
91 |
+
def _get_endpoint(self, endpoint_name: str) -> str:
|
92 |
+
"""Get full endpoint path including prefix"""
|
93 |
+
endpoints = self.llm_config.get('endpoints', {})
|
94 |
+
api_prefix = self.llm_config.get('api_prefix', '')
|
95 |
+
endpoint = endpoints.get(endpoint_name, '')
|
96 |
+
return f"{api_prefix}{endpoint}"
|
97 |
+
|
98 |
+
async def _make_request(
|
99 |
+
self,
|
100 |
+
method: str,
|
101 |
+
endpoint: str,
|
102 |
+
*,
|
103 |
+
params: Optional[Dict[str, Any]] = None,
|
104 |
+
json: Optional[Dict[str, Any]] = None,
|
105 |
+
stream: bool = False
|
106 |
+
) -> Any:
|
107 |
+
"""Make an authenticated request to the LLM Server."""
|
108 |
+
base_url = self.llm_config.get('host', 'http://localhost:8001')
|
109 |
+
full_endpoint = f"{base_url.rstrip('/')}/{self._get_endpoint(endpoint).lstrip('/')}"
|
110 |
+
|
111 |
+
try:
|
112 |
+
self.logger.info(f"Making {method} request to: {full_endpoint}")
|
113 |
+
# Create client outside the with block for streaming
|
114 |
+
client = await self._get_client()
|
115 |
+
|
116 |
+
if stream:
|
117 |
+
# For streaming, return both client and response context managers
|
118 |
+
return client, client.stream(
|
119 |
+
method,
|
120 |
+
self._get_endpoint(endpoint),
|
121 |
+
params=params,
|
122 |
+
json=json
|
123 |
+
)
|
124 |
+
else:
|
125 |
+
# For non-streaming, use context manager
|
126 |
+
async with client as c:
|
127 |
+
response = await c.request(
|
128 |
+
method,
|
129 |
+
self._get_endpoint(endpoint),
|
130 |
+
params=params,
|
131 |
+
json=json
|
132 |
+
)
|
133 |
+
response.raise_for_status()
|
134 |
+
return response
|
135 |
+
|
136 |
+
except Exception as e:
|
137 |
+
self.logger.error(f"Error in request to {full_endpoint}: {str(e)}")
|
138 |
+
raise
|
139 |
+
|
140 |
+
async def generate_response(
|
141 |
+
self,
|
142 |
+
prompt: str,
|
143 |
+
system_message: Optional[str] = None,
|
144 |
+
max_new_tokens: Optional[int] = None
|
145 |
+
) -> str:
|
146 |
+
"""Generate a complete response by forwarding the request to the LLM Server."""
|
147 |
+
self.logger.debug(f"Forwarding generation request for prompt: {prompt[:50]}...")
|
148 |
+
|
149 |
+
try:
|
150 |
+
response = await self._make_request(
|
151 |
+
"POST",
|
152 |
+
"generate",
|
153 |
+
json={
|
154 |
+
"prompt": prompt,
|
155 |
+
"system_message": system_message,
|
156 |
+
"max_new_tokens": max_new_tokens
|
157 |
+
}
|
158 |
+
)
|
159 |
+
data = response.json()
|
160 |
+
return data["generated_text"]
|
161 |
+
|
162 |
+
except Exception as e:
|
163 |
+
self.logger.error(f"Error in generate_response: {str(e)}")
|
164 |
+
raise
|
165 |
+
|
166 |
+
async def generate_stream(
|
167 |
+
self,
|
168 |
+
prompt: str,
|
169 |
+
system_message: Optional[str] = None,
|
170 |
+
max_new_tokens: Optional[int] = None
|
171 |
+
) -> AsyncIterator[str]:
|
172 |
+
"""Generate a streaming response by forwarding the request to the LLM Server."""
|
173 |
+
self.logger.debug(f"Forwarding streaming request for prompt: {prompt[:50]}...")
|
174 |
+
|
175 |
+
try:
|
176 |
+
client, stream_cm = await self._make_request(
|
177 |
+
"POST",
|
178 |
+
"generate_stream",
|
179 |
+
json={
|
180 |
+
"prompt": prompt,
|
181 |
+
"system_message": system_message,
|
182 |
+
"max_new_tokens": max_new_tokens
|
183 |
+
},
|
184 |
+
stream=True
|
185 |
+
)
|
186 |
+
|
187 |
+
async with client:
|
188 |
+
async with stream_cm as response:
|
189 |
+
async for chunk in response.aiter_text():
|
190 |
+
yield chunk
|
191 |
+
|
192 |
+
except Exception as e:
|
193 |
+
self.logger.error(f"Error in generate_stream: {str(e)}")
|
194 |
+
raise
|
195 |
+
|
196 |
+
async def generate_embedding(self, text: str) -> List[float]:
|
197 |
+
"""Generate embedding vector from input text."""
|
198 |
+
self.logger.debug(f"Forwarding embedding request for text: {text[:50]}...")
|
199 |
+
|
200 |
+
try:
|
201 |
+
response = await self._make_request(
|
202 |
+
"POST",
|
203 |
+
"embedding",
|
204 |
+
json={"text": text}
|
205 |
+
)
|
206 |
+
data = response.json()
|
207 |
+
return data["embedding"]
|
208 |
+
|
209 |
+
except Exception as e:
|
210 |
+
self.logger.error(f"Error in generate_embedding: {str(e)}")
|
211 |
+
raise
|
212 |
+
|
213 |
+
async def check_system_status(self) -> Dict[str, Any]:
|
214 |
+
"""Check system status of the LLM Server."""
|
215 |
+
self.logger.debug("Checking system status...")
|
216 |
+
|
217 |
+
try:
|
218 |
+
response = await self._make_request(
|
219 |
+
"GET",
|
220 |
+
"system_status"
|
221 |
+
)
|
222 |
+
return response.json()
|
223 |
+
|
224 |
+
except Exception as e:
|
225 |
+
self.logger.error(f"Error in check_system_status: {str(e)}")
|
226 |
+
raise
|
227 |
+
|
228 |
+
async def validate_system(self) -> Dict[str, Any]:
|
229 |
+
"""Validate system configuration and setup."""
|
230 |
+
self.logger.debug("Validating system configuration...")
|
231 |
+
|
232 |
+
try:
|
233 |
+
response = await self._make_request(
|
234 |
+
"GET",
|
235 |
+
"system_validate"
|
236 |
+
)
|
237 |
+
return response.json()
|
238 |
+
|
239 |
+
except Exception as e:
|
240 |
+
self.logger.error(f"Error in validate_system: {str(e)}")
|
241 |
+
raise
|
242 |
+
|
243 |
+
async def initialize_model(self, model_name: Optional[str] = None) -> Dict[str, Any]:
|
244 |
+
"""Initialize specified model or default model."""
|
245 |
+
self.logger.debug(f"Initializing model: {model_name or 'default'}")
|
246 |
+
|
247 |
+
try:
|
248 |
+
response = await self._make_request(
|
249 |
+
"POST",
|
250 |
+
"model_initialize",
|
251 |
+
params={"model_name": model_name} if model_name else None
|
252 |
+
)
|
253 |
+
return response.json()
|
254 |
+
|
255 |
+
except Exception as e:
|
256 |
+
self.logger.error(f"Error in initialize_model: {str(e)}")
|
257 |
+
raise
|
258 |
+
|
259 |
+
async def initialize_embedding_model(self, model_name: Optional[str] = None) -> Dict[str, Any]:
|
260 |
+
"""Initialize embedding model."""
|
261 |
+
self.logger.debug(f"Initializing embedding model: {model_name or 'default'}")
|
262 |
+
|
263 |
+
try:
|
264 |
+
response = await self._make_request(
|
265 |
+
"POST",
|
266 |
+
"model_initialize_embedding",
|
267 |
+
json={"model_name": model_name} if model_name else {}
|
268 |
+
)
|
269 |
+
return response.json()
|
270 |
+
|
271 |
+
except Exception as e:
|
272 |
+
self.logger.error(f"Error in initialize_embedding_model: {str(e)}")
|
273 |
+
raise
|
274 |
+
|
275 |
+
async def download_model(self, model_name: Optional[str] = None) -> Dict[str, str]:
|
276 |
+
"""Download model files from the LLM Server."""
|
277 |
+
self.logger.debug(f"Forwarding model download request for: {model_name or 'default model'}")
|
278 |
+
|
279 |
+
try:
|
280 |
+
response = await self._make_request(
|
281 |
+
"POST",
|
282 |
+
"model_download",
|
283 |
+
params={"model_name": model_name} if model_name else None
|
284 |
+
)
|
285 |
+
return response.json()
|
286 |
+
|
287 |
+
except Exception as e:
|
288 |
+
self.logger.error(f"Error in download_model: {str(e)}")
|
289 |
+
raise
|
290 |
+
|
291 |
+
async def cleanup(self):
|
292 |
+
"""Cleanup method - no longer needed as clients are created per-request"""
|
293 |
+
pass
|
294 |
+
|
295 |
+
|
296 |
+
class OpenAIAdapter(LLMAdapter):
|
297 |
+
"""Adapter for OpenAI-compatible services (OpenAI, Azure OpenAI, local services with OpenAI API)."""
|
298 |
+
|
299 |
+
def __init__(self, config: Dict[str, Any]):
|
300 |
+
self.logger = logging.getLogger(__name__)
|
301 |
+
self.logger.info("Initializing OpenAI Adapter")
|
302 |
+
self.config = config
|
303 |
+
self.openai_config = config.get('openai', {})
|
304 |
+
# Additional OpenAI-specific setup would go here
|
305 |
+
|
306 |
+
async def generate_response(self, prompt: str, system_message: Optional[str] = None, max_new_tokens: Optional[int] = None) -> str:
|
307 |
+
"""OpenAI implementation - would use openai Python client"""
|
308 |
+
# Implementation would go here
|
309 |
+
pass
|
310 |
+
|
311 |
+
async def generate_stream(self, prompt: str, system_message: Optional[str] = None, max_new_tokens: Optional[int] = None) -> AsyncIterator[str]:
|
312 |
+
"""OpenAI streaming implementation"""
|
313 |
+
# Implementation would go here
|
314 |
+
async def placeholder_stream():
|
315 |
+
yield "Not implemented yet"
|
316 |
+
return placeholder_stream()
|
317 |
+
|
318 |
+
# ... implementations for other methods
|
319 |
+
|
320 |
+
|
321 |
+
class vLLMAdapter(LLMAdapter):
|
322 |
+
"""Adapter for vLLM services."""
|
323 |
+
|
324 |
+
def __init__(self, config: Dict[str, Any]):
|
325 |
+
self.logger = logging.getLogger(__name__)
|
326 |
+
self.logger.info("Initializing vLLM Adapter")
|
327 |
+
self.config = config
|
328 |
+
self.vllm_config = config.get('vllm', {})
|
329 |
+
# Additional vLLM-specific setup would go here
|
330 |
+
|
331 |
+
# ... implementations for all methods
|
332 |
+
|
333 |
+
|
334 |
+
# Factory function to create the appropriate adapter
|
335 |
+
def create_adapter(config: Dict[str, Any]) -> LLMAdapter:
|
336 |
+
"""Create an adapter instance based on configuration."""
|
337 |
+
adapter_type = config.get('adapter', {}).get('type', 'http')
|
338 |
+
|
339 |
+
if adapter_type == 'http':
|
340 |
+
return HTTPLLMAdapter(config)
|
341 |
+
elif adapter_type == 'openai':
|
342 |
+
return OpenAIAdapter(config)
|
343 |
+
elif adapter_type == 'vllm':
|
344 |
+
return vLLMAdapter(config)
|
345 |
+
else:
|
346 |
+
raise ValueError(f"Unknown adapter type: {adapter_type}")
|