import httpx from typing import Optional, AsyncIterator, Dict, Any, Iterator, List import logging import asyncio import os from litserve import LitAPI from pydantic import BaseModel class GenerationResponse(BaseModel): generated_text: str class InferenceApi(LitAPI): def __init__(self, config: Dict[str, Any]): """Initialize the Inference API with configuration.""" super().__init__() self.logger = logging.getLogger(__name__) self.logger.info("Initializing Inference API") self._device = None self.stream = False self.config = config self.llm_config = config.get('llm_server', {}) def setup(self, device: Optional[str] = None): """Synchronous setup method required by LitAPI""" self._device = device self.logger.info(f"Inference API setup completed on device: {device}") return self # It's common for setup methods to return self for chaining async def _get_client(self): """Get or create HTTP client as needed""" return httpx.AsyncClient( base_url=self.llm_config.get('base_url', 'http://localhost:8001'), timeout=float(self.llm_config.get('timeout', 60.0)) ) def _get_endpoint(self, endpoint_name: str) -> str: """Get full endpoint path including prefix""" endpoints = self.llm_config.get('endpoints', {}) api_prefix = self.llm_config.get('api_prefix', '') endpoint = endpoints.get(endpoint_name, '') return f"{api_prefix}{endpoint}" async def _make_request( self, method: str, endpoint: str, *, params: Optional[Dict[str, Any]] = None, json: Optional[Dict[str, Any]] = None, stream: bool = False ) -> Any: """Make an authenticated request to the LLM Server.""" access_token = os.environ.get("InferenceAPI") headers = {"Authorization": f"Bearer {access_token}"} if access_token else {} base_url = self.llm_config.get('base_url', 'http://localhost:8002') full_endpoint = f"{base_url.rstrip('/')}/{self._get_endpoint(endpoint).lstrip('/')}" try: self.logger.info(f"Making {method} request to: {full_endpoint}") async with await self._get_client() as client: if stream: return await client.stream( method, self._get_endpoint(endpoint), params=params, json=json, headers=headers ) else: response = await client.request( method, self._get_endpoint(endpoint), params=params, json=json, headers=headers ) response.raise_for_status() return response except Exception as e: self.logger.error(f"Error in request to {full_endpoint}: {str(e)}") raise def predict(self, x: str, **kwargs) -> Iterator[str]: """Non-async prediction method that yields results.""" loop = asyncio.get_event_loop() async def async_gen(): async for item in self._async_predict(x, **kwargs): yield item gen = async_gen() while True: try: yield loop.run_until_complete(gen.__anext__()) except StopAsyncIteration: break async def _async_predict(self, x: str, **kwargs) -> AsyncIterator[str]: """Internal async prediction method.""" if self.stream: async for chunk in self.generate_stream(x, **kwargs): yield chunk else: response = await self.generate_response(x, **kwargs) yield response async def generate_response( self, prompt: str, system_message: Optional[str] = None, max_new_tokens: Optional[int] = None ) -> str: """Generate a complete response by forwarding the request to the LLM Server.""" self.logger.debug(f"Forwarding generation request for prompt: {prompt[:50]}...") try: response = await self._make_request( "POST", "generate", json={ "prompt": prompt, "system_message": system_message, "max_new_tokens": max_new_tokens } ) data = response.json() return data["generated_text"] except Exception as e: self.logger.error(f"Error in generate_response: {str(e)}") raise async def generate_stream( self, prompt: str, system_message: Optional[str] = None, max_new_tokens: Optional[int] = None ) -> AsyncIterator[str]: """Generate a streaming response by forwarding the request to the LLM Server.""" self.logger.debug(f"Forwarding streaming request for prompt: {prompt[:50]}...") try: async with await self._make_request( "POST", "generate_stream", json={ "prompt": prompt, "system_message": system_message, "max_new_tokens": max_new_tokens }, stream=True ) as response: async for chunk in response.aiter_text(): yield chunk except Exception as e: self.logger.error(f"Error in generate_stream: {str(e)}") raise async def generate_embedding(self, text: str) -> List[float]: """Generate embedding vector from input text.""" self.logger.debug(f"Forwarding embedding request for text: {text[:50]}...") try: response = await self._make_request( "POST", "embedding", json={"text": text} ) data = response.json() return data["embedding"] except Exception as e: self.logger.error(f"Error in generate_embedding: {str(e)}") raise async def check_system_status(self) -> Dict[str, Any]: """Check system status of the LLM Server.""" self.logger.debug("Checking system status...") try: response = await self._make_request( "GET", "system_status" ) return response.json() except Exception as e: self.logger.error(f"Error in check_system_status: {str(e)}") raise async def download_model(self, model_name: Optional[str] = None) -> Dict[str, str]: """Download model files from the LLM Server.""" self.logger.debug(f"Forwarding model download request for: {model_name or 'default model'}") try: response = await self._make_request( "POST", "model_download", params={"model_name": model_name} if model_name else None ) return response.json() except Exception as e: self.logger.error(f"Error in download_model: {str(e)}") raise async def validate_system(self) -> Dict[str, Any]: """Validate system configuration and setup.""" self.logger.debug("Validating system configuration...") try: response = await self._make_request( "GET", "system_validate" ) return response.json() except Exception as e: self.logger.error(f"Error in validate_system: {str(e)}") raise async def initialize_model(self, model_name: Optional[str] = None) -> Dict[str, Any]: """Initialize specified model or default model.""" self.logger.debug(f"Initializing model: {model_name or 'default'}") try: response = await self._make_request( "POST", "model_initialize", params={"model_name": model_name} if model_name else None ) return response.json() except Exception as e: self.logger.error(f"Error in initialize_model: {str(e)}") raise async def initialize_embedding_model(self, model_name: Optional[str] = None) -> Dict[str, Any]: """Initialize embedding model.""" self.logger.debug(f"Initializing embedding model: {model_name or 'default'}") try: response = await self._make_request( "POST", "model_initialize_embedding", json={"model_name": model_name} if model_name else {} ) return response.json() except Exception as e: self.logger.error(f"Error in initialize_embedding_model: {str(e)}") raise def decode_request(self, request: Any, **kwargs) -> str: """Convert the request payload to input format.""" if isinstance(request, dict) and "prompt" in request: return request["prompt"] return request def encode_response(self, output: Iterator[str], **kwargs) -> Dict[str, Any]: """Convert the model output to a response payload.""" if self.stream: return {"generated_text": output} try: result = next(output) return {"generated_text": result} except StopIteration: return {"generated_text": ""} async def cleanup(self): """Cleanup method - no longer needed as clients are created per-request""" pass