File size: 9,899 Bytes
19b1be5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import requests
import json
import sseclient
import sys
from pathlib import Path
import yaml
from typing import Optional
import os

from litgpt.scripts.convert_hf_checkpoint import convert_hf_checkpoint
from litgpt.scripts.download import download_from_hub

DEFAULT_CONFIG = {
    'server': {'url': 'http://localhost:7860'},
    'model': {
        'name': 'Qwen2.5-Coder-7B-Instruct',
        'download_location': 'huihui-ai/Qwen2.5-Coder-7B-Instruct-abliterated',
        'folder_path': 'huihui-ai/Qwen2.5-Coder-7B-Instruct-abliterated',
        'model_filename': 'model.safetensors'
    }
}

def get_project_root(config: dict) -> Path:
    client_dir = Path(__file__).parent
    return (client_dir / config['project']['root_dir']).resolve()

def get_checkpoints_dir(config: dict) -> Path:
    root = get_project_root(config)
    return root / config['project']['checkpoints_dir']

class LLMClient:
    def __init__(self, config: dict):
        self.config = config
        self.base_url = config['server']['url'].rstrip('/')
        self.session = requests.Session()
        self.checkpoints_dir = get_checkpoints_dir(config)

    def download_model(
            self,
            repo_id: Optional[str] = None,
            access_token: Optional[str] = os.getenv("HF_TOKEN"),
    ) -> None:
        repo_id = repo_id or self.config['model']['folder_path']

        print(f"\nDownloading model from: {repo_id}")
        download_from_hub(
            repo_id=repo_id,
            model_name=self.config['model']['name'],
            access_token=access_token,
            tokenizer_only=False,
            checkpoint_dir=self.checkpoints_dir
        )

    def convert_model(
            self,
            folder_path: Optional[str] = None,
            model_name: Optional[str] = None,
    ) -> None:
        """Convert downloaded model to LitGPT format."""
        folder_path = folder_path or self.config['model']['folder_path']
        model_name = model_name or self.config['model']['name']

        model_dir = self.checkpoints_dir / folder_path
        print(f"\nConverting model in: {model_dir}")
        print(f"Using model name: {model_name}")

        try:
            convert_hf_checkpoint(
                checkpoint_dir=model_dir,
                model_name=model_name
            )
            print("Conversion complete!")
        except ValueError as e:
            if "is not a supported config name" in str(e):
                print(f"\nNote: Model '{model_name}' isn't in LitGPT's predefined configs.")
                print("You may need to use the model's safetensors files directly.")
            raise

    def initialize_model(
            self,
            folder_path: Optional[str] = None,
            mode: Optional[str] = None,
            **kwargs
    ) -> dict:
        """Initialize a converted model using the standard initialize endpoint."""
        url = f"{self.base_url}/initialize"

        folder_path = folder_path or self.config['model']['folder_path']
        mode = mode or self.config['hardware']['mode']

        # Debug prints
        print(f"\nDebug - Attempting to initialize model with:")
        print(f"Model path: {folder_path}")
        print(f"Mode: {mode}")

        payload = {
            "model_path": folder_path,  # This is what the regular initialize endpoint expects
            "mode": mode,
            "precision": self.config['hardware'].get('precision'),
            "quantize": self.config['hardware'].get('quantize'),
            "gpu_count": self.config['hardware'].get('gpu_count', 'auto'),
            **kwargs
        }

        response = self.session.post(url, json=payload)
        response.raise_for_status()
        return response.json()

    def generate_stream(
            self,
            prompt: str,
            max_new_tokens: Optional[int] = None,
            temperature: Optional[float] = None,
            top_k: Optional[int] = None,
            top_p: Optional[float] = None
    ):
        url = f"{self.base_url}/generate/stream"

        gen_config = self.config.get('generation', {})
        payload = {
            "prompt": prompt,
            "max_new_tokens": max_new_tokens or gen_config.get('max_new_tokens', 50),
            "temperature": temperature or gen_config.get('temperature', 1.0),
            "top_k": top_k or gen_config.get('top_k'),
            "top_p": top_p or gen_config.get('top_p', 1.0)
        }

        response = self.session.post(url, json=payload, stream=True)
        response.raise_for_status()

        client = sseclient.SSEClient(response)
        for event in client.events():
            yield json.loads(event.data)

def clear_screen():
    os.system('cls' if os.name == 'nt' else 'clear')

def load_config(config_path: str = "client_config.yaml") -> dict:
    try:
        with open(config_path, 'r') as f:
            config = yaml.safe_load(f)
        return config
    except Exception as e:
        print(f"Warning: Could not load config file: {str(e)}")
        print("Using default configuration.")
        return DEFAULT_CONFIG



def main():
    config = load_config()
    client = LLMClient(config)

    while True:
        clear_screen()
        print("\nLLM Engine Client")
        print("================")
        print(f"Server: {client.base_url}")
        print(f"Current Model: {config['model']['name']}")
        print("\nOptions:")
        print("1. Download Model")
        print("2. Convert Model")
        print("3. Initialize Model")
        print("4. Generate Text (Streaming)")
        print("5. Exit")

        choice = input("\nEnter your choice (1-5): ").strip()

        if choice == "1":
            try:
                print("\nDownload Model")
                print("==============")
                print(f"Default location: {config['model']['download_location']}")
                if input("\nUse default? (Y/n): ").lower() != 'n':
                    repo_id = config['model']['download_location']
                else:
                    repo_id = input("Enter download location: ").strip()

                access_token = input("Enter HF access token (or press Enter to use HF_TOKEN env var): ").strip() or None
                client.download_model(repo_id=repo_id, access_token=access_token)
                print("\nModel downloaded successfully!")
                input("\nPress Enter to continue...")

            except Exception as e:
                print(f"\nError: {str(e)}")
                input("\nPress Enter to continue...")

        elif choice == "2":
            try:
                print("\nConvert Model")
                print("=============")
                print(f"Default folder path: {config['model']['folder_path']}")
                print(f"Default model name: {config['model']['name']}")
                if input("\nUse defaults? (Y/n): ").lower() != 'n':
                    folder_path = config['model']['folder_path']
                    model_name = config['model']['name']
                else:
                    folder_path = input("Enter folder path: ").strip()
                    model_name = input("Enter model name: ").strip()

                client.convert_model(
                    folder_path=folder_path,
                    model_name=model_name
                )
                print("\nModel converted successfully!")
                input("\nPress Enter to continue...")

            except Exception as e:
                print(f"\nError: {str(e)}")
                input("\nPress Enter to continue...")

        elif choice == "3":
            try:
                print("\nInitialize Model")
                print("================")
                print(f"Default folder path: {config['model']['folder_path']}")
                if input("\nUse defaults? (Y/n): ").lower() != 'n':
                    result = client.initialize_model()
                else:
                    folder_path = input("Enter model folder path: ").strip()
                    mode = input("Enter mode (cpu/gpu): ").strip()
                    result = client.initialize_model(
                        folder_path=folder_path,
                        mode=mode
                    )
                print("\nSuccess! Model initialized.")
                print(json.dumps(result, indent=2))
                input("\nPress Enter to continue...")

            except Exception as e:
                print(f"\nError: {str(e)}")
                input("\nPress Enter to continue...")

        elif choice == "4":
            try:
                print("\nGenerate Text (Streaming)")
                print("========================")
                prompt = input("Enter your prompt: ").strip()

                print("\nGenerating (Ctrl+C to stop)...")
                print("\nResponse:")
                try:
                    for chunk in client.generate_stream(prompt=prompt):
                        if "error" in chunk:
                            print(f"\nError: {chunk['error']}")
                            break

                        token = chunk.get("token", "")
                        is_finished = chunk.get("metadata", {}).get("is_finished", False)

                        if is_finished:
                            print("\n[Generation Complete]")
                            break

                        print(token, end="", flush=True)

                except KeyboardInterrupt:
                    print("\n\n[Generation Stopped]")

                input("\nPress Enter to continue...")

            except Exception as e:
                print(f"\nError: {str(e)}")
                input("\nPress Enter to continue...")

        elif choice == "5":
            print("\nGoodbye!")
            break

        else:
            print("\nInvalid choice. Please try again.")
            input("\nPress Enter to continue...")

if __name__ == "__main__":
    main()