# Use Python 3.10 as base image for better compatibility with ML libraries FROM python:3.10-slim # Set working directory WORKDIR /app # Install required system dependencies RUN apt-get update && \ apt-get install -y \ git \ wget \ && apt-get clean \ && rm -rf /var/lib/apt/lists/* # Create and set permissions for directories RUN mkdir -p /app/.cache/huggingface && \ chmod 777 /app/.cache/huggingface && \ mkdir -p /app/.git && \ chmod 777 /app/.git # Set environment variables ENV TRANSFORMERS_CACHE=/app/.cache/huggingface/hub ENV HF_HOME=/app/.cache/huggingface ENV GIT_CONFIG_GLOBAL=/app/.git/config # Copy requirements first to leverage Docker cache COPY requirements.txt . # Install Python dependencies RUN pip install --no-cache-dir -r requirements.txt # Create checkpoints directory with proper permissions RUN mkdir -p /app/main/checkpoints && \ chmod 777 /app/main/checkpoints # Download model using litgpt command line with proper secret mounting RUN --mount=type=secret,id=HF_TOKEN,mode=0444,required=true \ export HF_TOKEN=$(cat /run/secrets/HF_TOKEN) && \ echo "Starting model download..." && \ litgpt download mistralai/Mistral-7B-Instruct-v0.3 \ --access_token ${HF_TOKEN} \ --checkpoint_dir /app/main/checkpoints || { echo "Download failed with status $?"; exit 1; } # Copy the rest of the application COPY . . # Set environment variables for the application ENV LLM_ENGINE_HOST=0.0.0.0 ENV LLM_ENGINE_PORT=7860 ENV MODEL_PATH=/app/main/checkpoints/mistralai/Mistral-7B-Instruct-v0.3 # Expose port 7860 for Hugging Face Spaces EXPOSE 7860 # Command to run the application CMD ["python", "main/main.py"]