File size: 12,009 Bytes
e23ea2d 56ece3e 4e5f073 e23ea2d c16d4f4 e23ea2d 239a985 e23ea2d 239a985 e23ea2d 239a985 e23ea2d 239a985 e23ea2d 239a985 e23ea2d 239a985 56ece3e e23ea2d 56ece3e b20c490 56ece3e b20c490 56ece3e e23ea2d 56ece3e e23ea2d 9de6abb 239a985 9de6abb e23ea2d 0ba7762 e23ea2d 9ebf7b6 e23ea2d 9ebf7b6 e23ea2d 4194468 e23ea2d 239a985 e23ea2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import gradio as gr
import requests
import json
import huggingface_hub
from huggingface_hub import HfApi
from gradio_client import Client
import os
HF_TOKEN = os.environ["HF_TOKEN"]
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
tulu = "https://tonic1-tulu.hf.space/--replicas/9sffh/"
welcome_message = """
Hi! I'm using [Tulu from AlenAi](https://huggingface.co/spaces/Tonic1/Tulu) I'll help you **build a GPT**. You can say something like, "make a bot that gives advice on how to grow your startup."
What would you like to make?
"""
welcome_preview_message = """
Welcome to **{}**! Say something like:
"{}"
"""
# sample_response = """
# Certainly! Here we go:
# Title: Recipe Recommender
# System Prompt: Utilize your language model abilities to suggest delicious recipes based on user preferences such as ingredients, cuisine type, cooking time, etc. Ensure accuracy and variety while maintaining a conversational style with the user.
# Example User Input: Vegetarian dinner ideas under 30 minutes
# """
system_prompt = """
You are an AI whose job it is to help users create their own chatbots. In particular, you need to respond succintly in a friendly tone, write a system prompt for an LLM, a catchy title for the chatbot, and a very short example user input. Make sure each part is included.
For example, if a user says, "make a bot that gives advice on how to grow your startup", first do a friendly response, then add the title, system prompt, and example user input. Immediately STOP after the example input. It should be EXACTLY in this format:
Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback!
Title: Startup Coach
System prompt: Your job as an LLM is to provide good startup advice. Do not provide extraneous comments on other topics. Be succinct but useful.
Example input: Risks of setting up a non-profit board
Here's another example. If a user types, "Make a chatbot that roasts tech ceos", respond:
Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback!
Title: Tech Roaster
System prompt: As an LLM, your primary function is to deliver hilarious and biting critiques of technology CEOs. Keep it witty and entertaining, but also make sure your jokes aren't too mean-spirited or factually incorrect.
Example input: Elon Musk
"""
def build_input_prompt(message, chatbot, system_prompt):
"""
Constructs the input prompt string from the chatbot interactions and the current message.
"""
input_prompt = "<|system|>\n" + system_prompt + "</s>\n<|user|>\n"
for interaction in chatbot:
input_prompt = input_prompt + str(interaction[0]) + "</s>\n<|assistant|>\n" + str(interaction[1]) + "\n</s>\n<|user|>\n"
input_prompt = input_prompt + str(message) + "</s>\n<|assistant|>"
return input_prompt
def post_request_beta(payload):
"""
Sends a POST request to the predefined Tulu and returns the JSON response.
"""
response = requests.post(tulu, headers=HEADERS, json=payload)
response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful status code
return response.json()
def predict_beta(message, chatbot=[], system_prompt=system_prompt):
client = Client(tulu)
try:
# Adjust these parameters as needed
max_new_tokens = 1200
temperature = 0.4
top_p = 0.9
repetition_penalty = 0.5
advanced = False
# Making the prediction
result = client.predict(
message, # Your Message
system_prompt, # Optional Tulu Assistant Message (can adjust if needed)
max_new_tokens,
temperature,
top_p,
repetition_penalty,
advanced,
fn_index=0
)
# Extracting the response
if result is not None and len(result) > 0:
bot_message = result[0] # Assuming the response is in the first element
return bot_message
else:
raise gr.Error("No response received from the model.")
except Exception as e:
error_msg = f"An error occurred: {str(e)}"
raise gr.Error(error_msg)
def extract_title_prompt_example(text, title, system_prompt, example_input):
try:
# Finding the indices of the key terms
text_start = text.rfind("<|assistant|>", ) + len("<|assistant|>")
text = text[text_start:]
except ValueError:
pass
try:
title_start = text.lower().rfind("title:") + len("title:")
prompt_start = text.lower().rfind("system prompt:")
title = text[title_start:prompt_start].strip()
except ValueError:
pass
try:
prompt_start = text.lower().rfind("system prompt:") + len("system prompt:")
example_start = text.lower().rfind("example input:")
system_prompt = text[prompt_start:example_start].strip()
except ValueError:
pass
try:
example_start = text.lower().rfind("example input:") + len("example input:")
example_input = text[example_start:].strip()
example_input = example_input[:example_input.index("\n")]
except ValueError:
pass
return text, title, system_prompt, example_input
def make_open_gpt(message, history, current_title, system_prompt, current_example_input):
response = predict_beta(message, history, system_prompt)
response, title, system_prompt, example_input = extract_title_prompt_example(response, current_title, system_prompt, current_example_input)
return "", history + [(message, response)], title, system_prompt, example_input, [(None, welcome_preview_message.format(title, example_input))], example_input, gr.Column(visible=True), gr.Group(visible=True)
def set_title_example(title, example):
return [(None, welcome_preview_message.format(title, example))], example, gr.Column(visible=True), gr.Group(visible=True)
chatbot_preview = gr.Chatbot(layout="panel")
textbox_preview = gr.Textbox(scale=7, container=False)
def test_preview_chatbot(message, history, system_prompt):
response = predict_beta(message, history, system_prompt)
text_start = response.rfind("<|assistant|>", ) + len("<|assistant|>")
response = response[text_start:]
return response
def strip_invalid_filename_characters(filename: str, max_bytes: int = 200) -> str:
"""Strips invalid characters from a filename and ensures that the file_length is less than `max_bytes` bytes."""
filename = filename.replace(" ", "-")
filename = "".join([char for char in filename if char.isalnum() or char in "_-"])
filename_len = len(filename.encode())
if filename_len > max_bytes:
while filename_len > max_bytes:
if len(filename) == 0:
break
filename = filename[:-1]
filename_len = len(filename.encode())
return filename
constants = """
SYSTEM_PROMPT = "{}"
TITLE = "{}"
EXAMPLE_INPUT = "{}"
"""
def publish(textbox_system_prompt, textbox_title, textbox_example, textbox_token):
source_file = 'app_template.py'
destination_file = 'app.py'
constants_formatted = constants.format(textbox_system_prompt, textbox_title, textbox_example)
with open(source_file, 'r') as file:
original_content = file.read()
with open(destination_file, 'w') as file:
file.write(constants_formatted + original_content)
title = strip_invalid_filename_characters(textbox_title, max_bytes=30)
api = HfApi(token=textbox_token)
new_space = api.create_repo(
repo_id=f"open-gpt-{title}",
repo_type="space",
exist_ok=True,
private=False,
space_sdk="gradio",
token=textbox_token,
)
api.upload_file(
repo_id=new_space.repo_id,
path_or_fileobj='app.py',
path_in_repo='app.py',
token=textbox_token,
repo_type="space",
)
api.upload_file(
repo_id=new_space.repo_id,
path_or_fileobj='README_template.md',
path_in_repo='README.md',
token=textbox_token,
repo_type="space",
)
huggingface_hub.add_space_secret(
new_space.repo_id, "HF_TOKEN", textbox_token, token=textbox_token
)
return gr.Markdown(f"Published to https://huggingface.co/spaces/{new_space.repo_id} ✅", visible=True), gr.Button("Publish", interactive=True)
css = """
#preview-tab-button{
font-weight: bold;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(""" # 👋🏻Welcome to 🕵🏻♂️Agent🌷Tulu
**A🕵🏻♂️Agent🌷Tulu** lets you create your own **open-source GPTs** using [allenai/tulu-2-dpo-13b](https://huggingface.co/allenai/tulu-2-dpo-13b). Start chatting to automatically below to automatically bake your GPT (or you can manually configure the recipe in the second tab). You can build and test them for free & publish them on Spaces (as Open GPTs are powered by the [Tulu DPO model](https://huggingface.co/allenai/tulu-2-dpo-70b) ).
You think this is cool + want to make your own ? check out [GPTBaker](https://huggingface.co/abidlabs/GPT-Baker) from [AbidLabs](https://huggingface.co/abidlabs) of 🤗[Gradio](https://www.gradio.app/)
### Join us:
TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/GWpVpekp) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) """
)
with gr.Row():
with gr.Column(scale=3):
with gr.Tab("Create"):
chatbot_maker = gr.Chatbot([(None, welcome_message)], layout="panel", elem_id="chatbot-maker")
with gr.Group():
with gr.Row():
textbox_maker = gr.Textbox(placeholder="Make a bot that roasts tech CEOs", scale=7, container=False, autofocus=True)
submit_btn = gr.Button("Bake 👩🍳", variant="secondary")
with gr.Tab("Configure Recipe"):
textbox_title = gr.Textbox("GPT Preview", label="Title")
textbox_system_prompt = gr.Textbox(label="System prompt", lines=6)
textbox_example = gr.Textbox(label="Placeholder example", lines=2)
with gr.Tab("Files"):
gr.Markdown("RAG coming soon!")
with gr.Column(visible=False, scale=5) as preview_column:
with gr.Tab("🪄 Preview of your Open GPT", elem_id="preview-tab") as preview_tab:
gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview, autofocus=False, submit_btn="Test", additional_inputs=[textbox_system_prompt])
with gr.Group(visible=False) as publish_row:
with gr.Row():
textbox_token = gr.Textbox(show_label=False, placeholder="Ready to publish to Spaces? Enter your HF token here", scale=7)
publish_btn = gr.Button("Publish", variant="primary")
published_status = gr.Markdown(visible=False)
gr.on([submit_btn.click, textbox_maker.submit], make_open_gpt, [textbox_maker, chatbot_maker, textbox_title, textbox_system_prompt, textbox_example], [textbox_maker, chatbot_maker, textbox_title, textbox_system_prompt, textbox_example, chatbot_preview, textbox_preview, preview_column, publish_row])
gr.on([textbox_title.blur, textbox_example.blur], set_title_example, [textbox_title, textbox_example], [chatbot_preview, textbox_preview, preview_column, publish_row])
publish_btn.click(lambda : gr.Button("Publishing...", interactive=False), None, publish_btn).then(publish, [textbox_system_prompt, textbox_title, textbox_example, textbox_token], [published_status, publish_btn])
demo.launch() |