import gradio as gr from gradio_client import Client import os import requests tulu = "https://tonic1-tulu.hf.space/--replicas/t5vxm/" def predict_beta(message, chatbot=[], system_prompt=""): client = Client(tulu) try: max_new_tokens = 800 temperature = 0.4 top_p = 0.9 repetition_penalty = 0.9 advanced = True # Making the prediction result = client.predict( message, system_prompt max_new_tokens, temperature, top_p, repetition_penalty, advanced, fn_index=0 ) if result is not None and len(result) > 0: bot_message = result[0] return bot_message else: raise gr.Error("No response received from the model.") except Exception as e: error_msg = f"An error occurred: {str(e)}" raise gr.Error(error_msg) def test_preview_chatbot(message, history): response = predict_beta(message, history, SYSTEM_PROMPT) return response welcome_preview_message = f""" Welcome to **{TITLE}**! Say something like: ''{EXAMPLE_INPUT}'' """ chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)]) textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT) demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview) demo.launch()