import gradio as gr import requests import json import huggingface_hub from huggingface_hub import HfApi from gradio_client import Client import os HF_TOKEN = os.environ["HF_TOKEN"] HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"} tulu = "https://tonic1-tulu.hf.space/--replicas/bjtkd/" welcome_message = """ Hi! I'm using [Tulu from AlenAi](https://huggingface.co/spaces/Tonic1/Tulu) I'll help you **build a GPT**. You can say something like, "make a bot that gives advice on how to grow your startup." What would you like to make? """ welcome_preview_message = """ Welcome to **{}**! Say something like: "{}" """ # sample_response = """ # Certainly! Here we go: # Title: Recipe Recommender # System Prompt: Utilize your language model abilities to suggest delicious recipes based on user preferences such as ingredients, cuisine type, cooking time, etc. Ensure accuracy and variety while maintaining a conversational style with the user. # Example User Input: Vegetarian dinner ideas under 30 minutes # """ system_prompt = """ I an AI whose job it is to help users create their own chatbots. In particular, I respond using titles and subtiles in a friendly tone, write a system prompt for an LLM, a catchy title for the chatbot, and a very short example user input. I make sure each part is included. I only respond in the following format : # Title: # System prompt: # Example input: <|user|> "make a bot that gives advice on how to grow your startup", <|assistant|> I first do a friendly response, then I add the title, system prompt, and example user input. I Immediately STOP after the example input. It should be EXACTLY in this format: Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback! # Title: Startup Coach # System prompt: Your job as an LLM is to provide good startup advice. Do not provide extraneous comments on other topics. Be succinct but useful. # Example input: Risks of setting up a non-profit board <|user|> Make a chatbot that roasts tech ceos <|assistant|> Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback! # Title: Tech Roaster # System prompt: As an LLM, your primary function is to deliver hilarious and biting critiques of technology CEOs. Keep it witty and entertaining, but also make sure your jokes aren't too mean-spirited or factually incorrect. # Example input: Elon Musk <|user|> Make an app that producesses assessments <|assistant|> Sure, I'd be happy to help you build an app! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback! # Title: Assessment Genius # System prompt: Your app's primary function is to provide assessments for users. These assessments should be relevant, useful, and accurate. Keep in mind that the app should be user-friendly and easy to navigate. # Example input: Personality Assessment <|user|> make a gpt that helps to create mutants and masterminds characters <|assistant|> Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback! # Title: Mutants and Masterminds Character Creator # System prompt: As an LLM, your job is to help users create characters for the Mutants and Masterminds tabletop RPG. Your prompts should be clear and concise, and should help users make characters that are both fun and balanced. # Example input: Create a character with the Power Level 10 """ def predict_beta(message, chatbot=[], system_prompt=system_prompt, max_new_tokens=650, temperature=0.4, top_p=0.90, repetition_penalty=0.90, advanced=True): client = Client(tulu) try: result = client.predict( message, system_prompt, max_new_tokens, temperature, top_p, repetition_penalty, advanced, fn_index=0 ) print("Raw API Response:", result) # Debugging print if result is not None: print("Processed bot_message:", result) # Debugging print return result else: print("No response or empty response from the model.") # Debugging print return None except Exception as e: error_msg = f"An error occurred: {str(e)}" print(error_msg) # Debugging print return None def extract_title_prompt_example(text): default_title = "Custom GPT Agent" default_system_prompt = "This is a custom GPT agent." default_example_input = "Type your query here." # Split the text into lines and reverse it to start from the end lines = text.split('\n') lines.reverse() title = default_title system_prompt = default_system_prompt example_input = default_example_input # Flags to check if we have found the sections found_title, found_prompt, found_example = False, False, False for line in lines: if not found_example and line.startswith("# Example input:"): example_input = line.replace("# Example input:", "").strip() found_example = True elif not found_prompt and line.startswith("# System prompt:"): system_prompt = line.replace("# System prompt:", "").strip() found_prompt = True elif not found_title and line.startswith("# Title:"): title = line.replace("# Title:", "").strip() found_title = True # Break the loop if all sections are found if found_title and found_prompt and found_example: break return text, title, system_prompt, example_input def make_open_gpt(message, history, current_title, current_system_prompt, current_example_input, system_prompt=system_prompt): try: response = predict_beta(message, history, system_prompt) if not response: raise ValueError("Empty response from predict_beta") print("Response from predict_beta:", response) # Debugging print except Exception as e: response = f"Error in predict_beta: {str(e)}" print("Error in predict_beta:", response) # Debugging print # Set error values title = "Error" system_prompt = "Error in predict_beta" example_input = "Error" else: try: _, title, system_prompt, example_input = extract_title_prompt_example(response) except Exception as e: title = "Error" system_prompt = "Error in extraction" example_input = "Error" print(f"Error in extract_title_prompt_example: {str(e)}") # Ensure all expected outputs are returned return ( "", # Placeholder for textbox history + [(message, response)], # Updated chatbot history title or current_title, # Extracted or default title system_prompt or current_system_prompt, # Extracted or default system prompt example_input or current_example_input, # Extracted or default example input [(None, welcome_preview_message.format(title or current_title, example_input or current_example_input))], # Updated chatbot preview example_input or current_example_input, # Example input for textbox_preview gr.Column(visible=True), # Column visibility control gr.Group(visible=True) # Group visibility control ) def set_title_example(title, example): return [(None, welcome_preview_message.format(title, example))], example, gr.Column(visible=True), gr.Group(visible=True) chatbot_preview = gr.Chatbot(layout="panel") textbox_preview = gr.Textbox(scale=7, container=False) def test_preview_chatbot(message, history, system_prompt): response = predict_beta(message, history, system_prompt) return response def strip_invalid_filename_characters(filename: str, max_bytes: int = 200) -> str: """Strips invalid characters from a filename and ensures that the file_length is less than `max_bytes` bytes.""" filename = filename.replace(" ", "-") filename = "".join([char for char in filename if char.isalnum() or char in "_-"]) filename_len = len(filename.encode()) if filename_len > max_bytes: while filename_len > max_bytes: if len(filename) == 0: break filename = filename[:-1] filename_len = len(filename.encode()) return filename constants = """ SYSTEM_PROMPT = "{}" TITLE = "{}" EXAMPLE_INPUT = "{}" """ def publish(textbox_system_prompt, textbox_title, textbox_example, textbox_token): source_file = 'app_template.py' destination_file = 'app.py' constants_formatted = constants.format(textbox_system_prompt, textbox_title, textbox_example) with open(source_file, 'r') as file: original_content = file.read() with open(destination_file, 'w') as file: file.write(constants_formatted + original_content) title = strip_invalid_filename_characters(textbox_title, max_bytes=30) api = HfApi(token=textbox_token) new_space = api.create_repo( repo_id=f"open-gpt-{title}", repo_type="space", exist_ok=True, private=False, space_sdk="gradio", token=textbox_token, ) api.upload_file( repo_id=new_space.repo_id, path_or_fileobj='app.py', path_in_repo='app.py', token=textbox_token, repo_type="space", ) api.upload_file( repo_id=new_space.repo_id, path_or_fileobj='README_template.md', path_in_repo='README.md', token=textbox_token, repo_type="space", ) huggingface_hub.add_space_secret( new_space.repo_id, "HF_TOKEN", textbox_token, token=textbox_token ) return gr.Markdown(f"Published to https://huggingface.co/spaces/{new_space.repo_id} ✅", visible=True), gr.Button("Publish", interactive=True) css = """ #preview-tab-button{ font-weight: bold; } """ with gr.Blocks(css=css) as demo: gr.Markdown(""" # 👋🏻Welcome to 🕵🏻‍♂️Agent🌷Tulu **A🕵🏻‍♂️Agent🌷Tulu** lets you create your own **open-source GPTs** using [allenai/tulu-2-dpo-13b](https://huggingface.co/allenai/tulu-2-dpo-13b). Start chatting to automatically below to automatically bake your GPT (or you can manually configure the recipe in the second tab). You can build and test them for free & publish them on Spaces (as Open GPTs are powered by the [Tulu DPO model](https://huggingface.co/allenai/tulu-2-dpo-70b) ). You think this is cool + want to make your own ? check out [GPTBaker](https://huggingface.co/abidlabs/GPT-Baker) from [AbidLabs](https://huggingface.co/abidlabs) of 🤗[Gradio](https://www.gradio.app/) ### Join us: TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/GWpVpekp) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) """ ) with gr.Row(): with gr.Column(scale=3): with gr.Tab("Create"): chatbot_maker = gr.Chatbot([(None, welcome_message)], layout="panel", elem_id="chatbot-maker") with gr.Group(): with gr.Row(): textbox_maker = gr.Textbox(placeholder="Make a bot that roasts tech CEOs", scale=7, container=False, autofocus=True) submit_btn = gr.Button("Bake 👩‍🍳", variant="secondary") with gr.Tab("Configure Recipe"): textbox_title = gr.Textbox("GPT Preview", label="Title") textbox_system_prompt = gr.Textbox(label="System prompt", lines=6) textbox_example = gr.Textbox(label="Placeholder example", lines=2) with gr.Tab("Files"): gr.Markdown("RAG coming soon!") with gr.Column(visible=False, scale=5) as preview_column: with gr.Tab("🪄 Preview of your Open GPT", elem_id="preview-tab") as preview_tab: gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview, autofocus=False, submit_btn="Test", additional_inputs=[textbox_system_prompt]) with gr.Group(visible=False) as publish_row: with gr.Row(): textbox_token = gr.Textbox(show_label=False, placeholder="Ready to publish to Spaces? Enter your HF token here", scale=7) publish_btn = gr.Button("Publish", variant="primary") published_status = gr.Markdown(visible=False) gr.on([submit_btn.click, textbox_maker.submit], make_open_gpt, [textbox_maker, chatbot_maker, textbox_title, textbox_system_prompt, textbox_example], [textbox_maker, chatbot_maker, textbox_title, textbox_system_prompt, textbox_example, chatbot_preview, textbox_preview, preview_column, publish_row]) gr.on([textbox_title.blur, textbox_example.blur], set_title_example, [textbox_title, textbox_example], [chatbot_preview, textbox_preview, preview_column, publish_row]) publish_btn.click(lambda : gr.Button("Publishing...", interactive=False), None, publish_btn).then(publish, [textbox_system_prompt, textbox_title, textbox_example, textbox_token], [published_status, publish_btn]) demo.launch()