File size: 17,368 Bytes
7d88a24
be980dd
722ecec
579282f
fd10b6c
 
39dff4c
 
 
28b69ba
be980dd
adc6d8b
d22abe6
3eb706b
7dc22ca
c5fff41
56811e2
a31fde9
7dc22ca
a31fde9
 
 
 
 
 
 
abe552f
a31fde9
 
f86940b
215f2d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f8fb6c
215f2d8
0f8fb6c
215f2d8
 
7bd7744
11abe35
7dc22ca
 
 
c540f1a
 
c1f218b
 
74f3ed7
be980dd
 
 
c1f218b
be980dd
219ee2d
712a316
be980dd
 
52bb2a3
be980dd
 
 
 
 
 
722ecec
b67fe1a
adc6d8b
 
 
 
 
722ecec
94ec186
adc6d8b
94ec186
 
 
 
ff4e34f
94ec186
ff4e34f
 
94ec186
 
 
 
 
d0f80de
94ec186
ff4e34f
94ec186
 
 
 
ff4e34f
94ec186
 
ff4e34f
66a6aba
ff4e34f
 
94ec186
 
adc6d8b
 
 
 
4d5d42b
adc6d8b
 
ff4e34f
 
 
 
c6ddc86
3661992
28b69ba
 
 
4854a72
176b9ce
 
 
 
 
 
 
 
4854a72
 
 
176b9ce
d354d71
32cbfb2
176b9ce
 
 
 
 
 
 
 
 
 
 
d50b1d6
176b9ce
 
 
4854a72
176b9ce
 
 
 
 
 
 
 
 
 
 
 
d354d71
32cbfb2
176b9ce
4854a72
 
 
 
bb31795
 
176b9ce
4854a72
 
176b9ce
4854a72
176b9ce
4854a72
f2e5be8
722ecec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bc7c93
722ecec
 
 
 
 
 
 
 
 
 
 
 
ff4e34f
722ecec
75cae88
 
 
 
 
 
 
 
 
78cfc04
75cae88
 
 
745515a
75cae88
 
 
 
 
 
 
 
 
 
 
 
722ecec
c4c3c57
ff4e34f
173427c
 
c4c3c57
 
 
 
 
 
 
 
 
b510b99
 
ff4e34f
b510b99
 
ff4e34f
b510b99
 
 
8eb3297
215f2d8
 
b510b99
215f2d8
 
 
b510b99
5bdde3a
 
d22abe6
722ecec
e8d566d
 
 
 
 
 
 
 
 
6dbdc81
4f201ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdc81
e8d566d
 
767253a
 
 
 
c4c3c57
 
767253a
 
 
 
c4c3c57
 
767253a
5225bb2
e8d566d
 
 
4725fd5
6566912
d20cfe2
 
 
 
 
 
 
 
 
 
8eb3297
 
 
 
 
 
 
83ba519
a31fde9
e8d566d
68403cb
3eb706b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
# Welcome to Team Tonic's MultiMed

from gradio_client import Client
import os
import numpy as np
import base64
import gradio as gr
import requests
import json
import dotenv
from scipy.io.wavfile import write
import PIL
from openai import OpenAI
import time
dotenv.load_dotenv()

seamless_client = Client("facebook/seamless_m4t")
HuggingFace_Token = os.getenv("HuggingFace_Token")

def check_hallucination(assertion,citation):
    API_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
    headers = {"Authorization": f"Bearer {HuggingFace_Token}"}
    payload = {"inputs" : f"{assertion} [SEP] {citation}"}

    response = requests.post(API_URL, headers=headers, json=payload,timeout=120)
    output = response.json()
    output = output[0][0]["score"]

    return f"**hullicination score:** {output}"

# Define the API parameters
VAPI_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"

headers = {"Authorization": f"Bearer {HuggingFace_Token}"}

# Function to query the API
def query(payload):
    response = requests.post(VAPI_URL, headers=headers, json=payload)
    return response.json()

# Function to evaluate hallucination
def evaluate_hallucination(input1, input2):
    # Combine the inputs
    combined_input = f"{input1}. {input2}"
    
    # Make the API call
    output = query({"inputs": combined_input})
    
    # Extract the score from the output
    score = output[0][0]['score']
    
    # Generate a label based on the score
    if score < 0.5:
        label = f"🔴 Low risk. Score: {score:.2f}"
    else:
        label = f"🟢 Higher risk. Score: {score:.2f}"
    
    return label

def process_speech(input_language, audio_input):
    """
    processing sound using seamless_m4t
    """
    if audio_input is None :
        return "no audio or audio did not save yet \nplease try again ! "
    print(f"audio : {audio_input}")
    print(f"audio type : {type(audio_input)}")
    out = seamless_client.predict(
        "S2TT",
        "file",
        None,
        audio_input, #audio_name
        "",
        input_language,# source language
        "English",# target language
        api_name="/run",
    )
    out = out[1] # get the text
    try :
        return f"{out}"
    except Exception as e :
        return f"{e}"




def process_image(image) : 
    img_name = f"{np.random.randint(0, 100)}.jpg"
    PIL.Image.fromarray(image.astype('uint8'), 'RGB').save(img_name)
    image = open(img_name, "rb").read()
    base64_image = base64_image = base64.b64encode(image).decode('utf-8')
    openai_api_key = os.getenv('OPENAI_API_KEY')
    # oai_org = os.getenv('OAI_ORG')

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {openai_api_key}"
    }

    payload = {
        "model": "gpt-4-vision-preview",
        "messages": [
        {
            "role": "user",
            "content": [
            {
                "type": "text",
                "text": "You are clinical consultant discussion training cases with students at TonicUniversity. Assess and describe the photo in minute detail. Explain why each area or item in the photograph would be inappropriate to describe if required. Pay attention to anatomy, symptoms and remedies. Propose a course of action based on your assessment. Exclude any other commentary:"
            },
            {
                "type": "image_url",
                "image_url": {
                "url": f"data:image/jpeg;base64,{base64_image}"
                }
            }
            ]
        }
        ],
        "max_tokens": 1200
    }

    response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)

    try :
        out = response.json()
        out = out["choices"][0]["message"]["content"]

        return out
    except Exception as e :
        return f"{e}"


def query_vectara(text):
    user_message = text

    # Read authentication parameters from the .env file
    CUSTOMER_ID = os.getenv('CUSTOMER_ID')
    CORPUS_ID = os.getenv('CORPUS_ID')
    API_KEY = os.getenv('API_KEY')

    # Define the headers
    api_key_header = {
        "customer-id": CUSTOMER_ID,
        "x-api-key": API_KEY
    }

    # Define the request body in the structure provided in the example
    request_body = {
        "query": [
            {
                "query": user_message,
                "queryContext": "",
                "start": 1,
                "numResults": 50,
                "contextConfig": {
                    "charsBefore": 0,
                    "charsAfter": 0,
                    "sentencesBefore": 2,
                    "sentencesAfter": 2,
                    "startTag": "%START_SNIPPET%",
                    "endTag": "%END_SNIPPET%",
                },
                "rerankingConfig": {
                    "rerankerId": 272725718,
                    "mmrConfig": {
                        "diversityBias": 0.35
                    }
                },
                "corpusKey": [
                    {
                        "customerId": CUSTOMER_ID,
                        "corpusId": CORPUS_ID,
                        "semantics": 0,
                        "metadataFilter": "",
                        "lexicalInterpolationConfig": {
                            "lambda": 0
                        },
                        "dim": []
                    }
                ],
                "summary": [
                    {
                        "maxSummarizedResults": 5,
                        "responseLang": "auto",
                        "summarizerPromptName": "vectara-summary-ext-v1.2.0"
                    }
                ]
            }
        ]
    }

    # Make the API request using Gradio
    response = requests.post(
        "https://api.vectara.io/v1/query",
        json=request_body,  # Use json to automatically serialize the request body
        verify=True,
        headers=api_key_header
    )

    if response.status_code == 200:
        query_data = response.json()
        if query_data:
            sources_info = []

            # Extract the summary.
            summary = query_data['responseSet'][0]['summary'][0]['text']

            # Iterate over all response sets
            for response_set in query_data.get('responseSet', []):
                # Extract sources
                # Limit to top 5 sources.
                for source in response_set.get('response', [])[:5]:
                    source_metadata = source.get('metadata', [])
                    source_info = {}

                    for metadata in source_metadata:
                        metadata_name = metadata.get('name', '')
                        metadata_value = metadata.get('value', '')

                        if metadata_name == 'title':
                            source_info['title'] = metadata_value
                        elif metadata_name == 'author':
                            source_info['author'] = metadata_value
                        elif metadata_name == 'pageNumber':
                            source_info['page number'] = metadata_value

                    if source_info:
                        sources_info.append(source_info)

            result = {"summary": summary, "sources": sources_info}
            return f"{json.dumps(result, indent=2)}"
        else:
            return "No data found in the response."
    else:
        return f"Error: {response.status_code}"


def convert_to_markdown(vectara_response_json):
    vectara_response = json.loads(vectara_response_json)
    if vectara_response:
        summary = vectara_response.get('summary', 'No summary available')
        sources_info = vectara_response.get('sources', [])

        # Format the summary as Markdown
        markdown_summary = f' {summary}\n\n'

        # Format the sources as a numbered list
        markdown_sources = ""
        for i, source_info in enumerate(sources_info):
            author = source_info.get('author', 'Unknown author')
            title = source_info.get('title', 'Unknown title')
            page_number = source_info.get('page number', 'Unknown page number')
            markdown_sources += f"{i+1}. {title} by {author}, Page {page_number}\n"

        return f"{markdown_summary}**Sources:**\n{markdown_sources}"
    else:
        return "No data found in the response."
# Main function to handle the Gradio interface logic

def process_summary_with_openai(summary):
    """
    This function takes a summary text as input and processes it with OpenAI's GPT model.
    """
    try:
        # Ensure that the OpenAI client is properly initialized
        client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
        
        # Create the prompt for OpenAI's completion
        prompt = "You are clinical consultant discussion training cases with students at TonicUniversity. Assess and describe the proper options in minute detail. Propose a course of action based on your assessment. You will recieve a summary assessment in a language, respond ONLY in English. Exclude any other commentary:"
        
        # Call the OpenAI API with the prompt and the summary
        completion = client.chat.completions.create(
            model="gpt-4-1106-preview",  # Make sure to use the correct model name
            messages=[
                {"role": "system", "content": prompt},
                {"role": "user", "content": summary}
            ]
        )
        
        # Extract the content from the completion
        final_summary = completion.choices[0].message.content
        return final_summary
    except Exception as e:
        return str(e)
        

def process_and_query(input_language=None,audio_input=None,image_input=None,text_input=None):
    try:
        text = ""
        if text_input is not None :
            # augment the prompt before feeding it to vectara
            text = "the user asks the following to his health adviser " + text
        # process audio
        if audio_input is not None :
            text += "\n"+process_speech(input_language,audio_input)
        # process image
        if image_input is not None :
            text += "\n"+process_image(image_input)
        
        
        # Use the text to query Vectara
        vectara_response_json = query_vectara(text)
        
        # Convert the Vectara response to Markdown
        markdown_output = convert_to_markdown(vectara_response_json)
        
        # Process the summary with OpenAI
        final_response = process_summary_with_openai(markdown_output)

        # Evaluate hallucination
        hallucination_label = evaluate_hallucination(final_response, markdown_output)
        
        # Return the processed summary along with the hallucination label
        return final_response, hallucination_label

    except Exception as e:
        # Return a default value for both outputs in case of an exception
        return str(e), "Error in processing"


welcome_message = """
# 👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷
### How To Use ⚕🗣️😷MultiMed⚕: 
#### 🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using audio or text!
#### 🗣️📝 This is an educational and accessible conversational tool to improve wellness and sanitation in support of public health. 
#### 📚🌟💼 The knowledge base is composed of publicly available medical and health sources in multiple languages. We also used [Kelvalya/MedAware](https://huggingface.co/datasets/keivalya/MedQuad-MedicalQnADataset) that we processed and converted to HTML. The quality of the answers depends on the quality of the dataset, so if you want to see some data represented here, do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
#### Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)"             
"""


languages = [
    "Afrikaans",
    "Amharic",
    "Modern Standard Arabic",
    "Moroccan Arabic",
    "Egyptian Arabic",
    "Assamese",
    "Asturian",
    "North Azerbaijani",
    "Belarusian",
    "Bengali",
    "Bosnian",
    "Bulgarian",
    "Catalan",
    "Cebuano",
    "Czech",
    "Central Kurdish",
    "Mandarin Chinese",
    "Welsh",
    "Danish",
    "German",
    "Greek",
    "English",
    "Estonian",
    "Basque",
    "Finnish",
    "French",
    "West Central Oromo",
    "Irish",
    "Galician",
    "Gujarati",
    "Hebrew",
    "Hindi",
    "Croatian",
    "Hungarian",
    "Armenian",
    "Igbo",
    "Indonesian",
    "Icelandic",
    "Italian",
    "Javanese",
    "Japanese",
    "Kamba",
    "Kannada",
    "Georgian",
    "Kazakh",
    "Kabuverdianu",
    "Halh Mongolian",
    "Khmer",
    "Kyrgyz",
    "Korean",
    "Lao",
    "Lithuanian",
    "Luxembourgish",
    "Ganda",
    "Luo",
    "Standard Latvian",
    "Maithili",
    "Malayalam",
    "Marathi",
    "Macedonian",
    "Maltese",
    "Meitei",
    "Burmese",
    "Dutch",
    "Norwegian Nynorsk",
    "Norwegian Bokmål",
    "Nepali",
    "Nyanja",
    "Occitan",
    "Odia",
    "Punjabi",
    "Southern Pashto",
    "Western Persian",
    "Polish",
    "Portuguese",
    "Romanian",
    "Russian",
    "Slovak",
    "Slovenian",
    "Shona",
    "Sindhi",
    "Somali",
    "Spanish",
    "Serbian",
    "Swedish",
    "Swahili",
    "Tamil",
    "Telugu",
    "Tajik",
    "Tagalog",
    "Thai",
    "Turkish",
    "Ukrainian",
    "Urdu",
    "Northern Uzbek",
    "Vietnamese",
    "Xhosa",
    "Yoruba",
    "Cantonese",
    "Colloquial Malay",
    "Standard Malay",
    "Zulu"
]


with gr.Blocks(theme='ParityError/Anime') as iface : 
    gr.Markdown(welcome_message)
    with gr.Accordion("speech to text",open=True):
        input_language = gr.Dropdown(languages, label="select the language",value="English",interactive=True)
        audio_input = gr.Audio(label="speak",type="filepath",sources="microphone")
        audio_output = gr.Markdown(label="output text")
        # audio_button = gr.Button("process audio")
        # audio_button.click(process_speech, inputs=[input_language,audio_input], outputs=audio_output)
        gr.Examples([["English","sample_input.mp3"]],inputs=[input_language,audio_input])
    with gr.Accordion("image identification",open=True):
        image_input = gr.Image(label="upload image")
        image_output = gr.Markdown(label="output text")
        # image_button = gr.Button("process image")
        # image_button.click(process_image, inputs=image_input, outputs=image_output)
        gr.Examples(["sick person.jpeg"],inputs=[image_input])
    with gr.Accordion("text summarization",open=True):
        text_input = gr.Textbox(label="input text",lines=5)
        text_output = gr.Markdown(label="output text")
        text_button = gr.Button("process text")
        hallucination_output = gr.Label(label="Hallucination Evaluation")
        text_button.click(process_and_query, inputs=[input_language, audio_input, image_input, text_input], outputs=[text_output, hallucination_output])
        gr.Examples([
            ["What is the proper treatment for buccal herpes?"],
            ["Male, 40 presenting with swollen glands and a rash"],
            ["How does cellular metabolism work TCA cycle"],
            ["What special care must be provided to children with chicken pox?"],
            ["When and how often should I wash my hands?"],
            ["بکل ہرپس کا صحیح علاج کیا ہے؟"],
            ["구강 헤르페스의 적절한 치료법은 무엇입니까?"],
            ["Je, ni matibabu gani sahihi kwa herpes ya buccal?"],
        ],inputs=[text_input])
    # with gr.Accordion("hallucination check",open=True):
    #     assertion = gr.Textbox(label="assertion")
    #     citation =  gr.Textbox(label="citation text")
    #     hullucination_output = gr.Markdown(label="output text")
    #     hallucination_button = gr.Button("check hallucination")
    #     gr.Examples([["i am drunk","sarah is pregnant"]],inputs=[assertion,citation])
    #     hallucination_button.click(check_hallucination,inputs=[assertion,citation],outputs=hullucination_output)
    



iface.queue().launch(show_error=True,debug=True)