File size: 11,158 Bytes
7d88a24
579282f
fd10b6c
 
579282f
 
39dff4c
 
 
28b69ba
579282f
7dc22ca
 
 
 
 
 
 
 
 
 
 
 
4a0366f
f86940b
 
 
 
 
 
 
7dc22ca
f86940b
b67fe1a
7dc22ca
 
 
 
 
 
 
 
 
 
 
 
 
 
b67fe1a
 
7dc22ca
 
b67fe1a
fd10b6c
 
 
 
 
 
 
 
ff4e34f
 
4ffa9cc
 
 
ff4e34f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6ddc86
3661992
28b69ba
 
 
4854a72
176b9ce
 
 
 
 
 
 
 
4854a72
 
 
176b9ce
d354d71
32cbfb2
176b9ce
 
 
 
 
 
 
 
 
 
 
d50b1d6
176b9ce
 
 
4854a72
176b9ce
 
 
 
 
 
 
 
 
 
 
 
d354d71
32cbfb2
176b9ce
4854a72
 
 
 
bb31795
 
176b9ce
4854a72
 
176b9ce
4854a72
176b9ce
4854a72
f2e5be8
 
 
 
 
 
 
 
6b796ae
f2e5be8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b796ae
f2e5be8
 
 
 
 
 
 
 
 
 
 
 
 
6b796ae
f2e5be8
 
6b796ae
f2e5be8
 
 
 
 
 
 
6b796ae
f2e5be8
3516f35
f2e5be8
ff4e34f
d2a1bab
ff4e34f
 
 
 
 
 
 
 
 
 
 
 
 
68403cb
ff4e34f
 
70b2149
8e01d2c
2506674
ff4e34f
68403cb
 
4a33601
271cd5a
 
 
5a30e79
3e4680c
5a30e79
6ab9b9b
3a23947
 
3fc518e
3a23947
 
98c0e59
3a23947
 
68403cb
 
1d48332
68403cb
f2e5be8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Welcome to Team Tonic's MultiMed
import os
import numpy as np
import base64
import torch
import torchaudio
import gradio as gr
import requests
import json
import dotenv
from transformers import AutoProcessor, SeamlessM4TModel
import torchaudio
dotenv.load_dotenv()


AUDIO_SAMPLE_RATE = 16000.0
MAX_INPUT_AUDIO_LENGTH = 60  # in seconds
DEFAULT_TARGET_LANGUAGE = "English"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

processor = AutoProcessor.from_pretrained("ylacombe/hf-seamless-m4t-large")
model = SeamlessM4TModel.from_pretrained("ylacombe/hf-seamless-m4t-large").to(device)

from lang_list import (
    LANGUAGE_NAME_TO_CODE,
    S2ST_TARGET_LANGUAGE_NAMES,
    S2TT_TARGET_LANGUAGE_NAMES,
    T2TT_TARGET_LANGUAGE_NAMES,
    TEXT_SOURCE_LANGUAGE_NAMES,
    LANG_TO_SPKR_ID,
)    


def process_speech(sound):
    """
    processing sound using seamless_m4t
    """
    # task_name = "T2TT"
    arr, org_sr = torchaudio.load(sound)
    target_language_code = LANGUAGE_NAME_TO_CODE[DEFAULT_TARGET_LANGUAGE]
    new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
    max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
    if new_arr.shape[1] > max_length:
        new_arr = new_arr[:, :max_length]
        gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
    input_data = processor(audios = new_arr, sampling_rate=AUDIO_SAMPLE_RATE, return_tensors="pt").to(device)
    tokens_ids = model.generate(**input_data, generate_speech=False, tgt_lang=target_language_code, num_beams=5, do_sample=True)[0].cpu().squeeze().detach().tolist()
    text_out = processor.decode(tokens_ids, skip_special_tokens=True)

    return text_out
    

def convert_image_to_required_format(image):
    """
    convert image from numpy to base64
    """
    if type(image) == type(np.array([])):
        return base64.b64encode(image).decode('utf-8')


def process_image_with_openai(image):
    image_data = convert_image_to_required_format(image)
    openai_api_key = os.getenv('OPENAI_API_KEY') 
    if openai_api_key is None:
        raise Exception("OPENAI_API_KEY not found in environment variables")

    data_payload = {
        "model": "gpt-4-vision-preview",
        "messages": [
            {
                "role": "user",
                "content": image_data
            }
        ],
        "max_tokens": 300
    }

    response = requests.post(
        "https://api.openai.com/v1/chat/completions",
        headers={
            "Content-Type": "application/json",
            "Authorization": f"Bearer {openai_api_key}"
        },
        json=data_payload
    )

    if response.status_code == 200:
        return response.json()['choices'][0]['message']['content']
    else:
        raise Exception(f"OpenAI Error: {response.status_code}")


def query_vectara(text):
    user_message = text

    # Read authentication parameters from the .env file
    CUSTOMER_ID = os.getenv('CUSTOMER_ID')
    CORPUS_ID = os.getenv('CORPUS_ID')
    API_KEY = os.getenv('API_KEY')

    # Define the headers
    api_key_header = {
        "customer-id": CUSTOMER_ID,
        "x-api-key": API_KEY
    }

    # Define the request body in the structure provided in the example
    request_body = {
        "query": [
            {
                "query": user_message,
                "queryContext": "",
                "start": 1,
                "numResults": 50,
                "contextConfig": {
                    "charsBefore": 0,
                    "charsAfter": 0,
                    "sentencesBefore": 2,
                    "sentencesAfter": 2,
                    "startTag": "%START_SNIPPET%",
                    "endTag": "%END_SNIPPET%",
                },
                "rerankingConfig": {
                    "rerankerId": 272725718,
                    "mmrConfig": {
                        "diversityBias": 0.35
                    }
                },
                "corpusKey": [
                    {
                        "customerId": CUSTOMER_ID,
                        "corpusId": CORPUS_ID,
                        "semantics": 0,
                        "metadataFilter": "",
                        "lexicalInterpolationConfig": {
                            "lambda": 0
                        },
                        "dim": []
                    }
                ],
                "summary": [
                    {
                        "maxSummarizedResults": 5,
                        "responseLang": "auto",
                        "summarizerPromptName": "vectara-summary-ext-v1.2.0"
                    }
                ]
            }
        ]
    }

    # Make the API request using Gradio
    response = requests.post(
        "https://api.vectara.io/v1/query",
        json=request_body,  # Use json to automatically serialize the request body
        verify=True,
        headers=api_key_header
    )

    if response.status_code == 200:    
        query_data = response.json()    
        if query_data:    
            sources_info = []    
              
            # Extract the summary.  
            summary = query_data['responseSet'][0]['summary'][0]['text']  
  
            # Iterate over all response sets    
            for response_set in query_data.get('responseSet', []):    
                # Extract sources    
                for source in response_set.get('response', [])[:5]:  # Limit to top 5 sources.  
                    source_metadata = source.get('metadata', [])    
                    source_info = {}    
    
                    for metadata in source_metadata:    
                        metadata_name = metadata.get('name', '')    
                        metadata_value = metadata.get('value', '')    
    
                        if metadata_name == 'title':    
                            source_info['title'] = metadata_value    
                        elif metadata_name == 'author':    
                            source_info['author'] = metadata_value    
                        elif metadata_name == 'pageNumber':    
                            source_info['page number'] = metadata_value    
    
                    if source_info:    
                        sources_info.append(source_info)    
              
            result = {"summary": summary, "sources": sources_info}  
            return f"{json.dumps(result, indent=2)}"    
        else:    
            return "No data found in the response."    
    else:    
        return f"Error: {response.status_code}"    


def convert_to_markdown(vectara_response_json):  
    vectara_response = json.loads(vectara_response_json)  
    if vectara_response:  
        summary = vectara_response.get('summary', 'No summary available')  
        sources_info = vectara_response.get('sources', [])  
  
        # Format the summary as Markdown  
        markdown_summary = f'**Summary:** {summary}\n\n'  
  
        # Format the sources as a numbered list  
        markdown_sources = ""  
        for i, source_info in enumerate(sources_info):  
            author = source_info.get('author', 'Unknown author')  
            title = source_info.get('title', 'Unknown title')  
            page_number = source_info.get('page number', 'Unknown page number')  
            markdown_sources += f"{i+1}. {title} by {author}, Page {page_number}\n"  
  
        return f"{markdown_summary}**Sources:**\n{markdown_sources}"  
    else:  
        return "No data found in the response."  
# Main function to handle the Gradio interface logic
def process_and_query(text, image,audio):
    try:
        # If an image is provided, process it with OpenAI and use the response as the text query for Vectara
        if image is not None:
            text = process_image_with_openai(image)
        
        # Now, use the text (either provided by the user or obtained from OpenAI) to query Vectara
        vectara_response_json = query_vectara(text)
        markdown_output = convert_to_markdown(vectara_response_json)
        return markdown_output
    except Exception as e:
        return str(e)

# Define the Gradio interface
iface = gr.Interface(
    fn=process_and_query,
    inputs=[
        gr.Textbox(label="Input Text"),
        gr.Image(label="Upload Image"),
        gr.Audio(sources="microphone"),
    ],
    outputs=[gr.Markdown(label="Output Text")],
    title="👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷",
    description = '''
            ### How To Use ⚕🗣️😷MultiMed⚕: 
            #### 🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using audio or text!
            #### 🗣️📝 This is an educational and accessible conversational tool to improve wellness and sanitation in support of public health. 
            #### 📚🌟💼 The knowledge base is composed of publicly available medical and health sources in multiple languages. We also used [Kelvalya/MedAware](https://huggingface.co/datasets/keivalya/MedQuad-MedicalQnADataset) that we processed and converted to HTML. The quality of the answers depends on the quality of the dataset, so if you want to see some data represented here, do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
            #### Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)"
            ''',
    theme='ParityError/Anime',
    examples=[
        ["What is the proper treatment for buccal herpes?"],
        ["Male, 40 presenting with swollen glands and a rash"],
        ["How does cellular metabolism work TCA cycle"],
        ["What special care must be provided to children with chicken pox?"],
        ["When and how often should I wash my hands ?"],
        ["بکل ہرپس کا صحیح علاج کیا ہے؟"],
        ["구강 헤르페스의 적절한 치료법은 무엇입니까?"],
        ["Je, ni matibabu gani sahihi kwa herpes ya buccal?"],
    ],
)

iface.launch()